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Abstract

We use a fixed point gradient flow algorithm to compute the equilibria
of first-price procurement auctions in the presence of losses and Bayesian
priors. We use this efficient algorithm to compare optimal, first-price
and VCG auctions. This allows us to numerically estimate the social
cost of sub-optimality of the nodal pricing mechanism in wholesale elec-
tricity markets. We also derive a closed form expression of the optimal
mechanism procurement cost when the types are uniformly distributed.
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1 Introduction

Many liberalized electricity markets – such as the US, UK and Spain – involve
wholesale trading through an integrated market where frequent market clear-
ing processes take place under the supervision of a central operator, the
Independent System Operator (ISO). In this context of short-term operations,
four notable features arise: (1) demand is inelastic and must be satisfied at
each vertex of the grid, (2) the grid imposes significant constraints on the
allocations that can be selected, (3) there are losses through the transmis-
sion lines, (4) generators have private information about their production cost.
Because of those features, generators have a non-negligible degree of market
power (Borenstein et al, 2000; Escobar and Jofré, 2010).
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Indeed, consider one of the most common pricing method, namely nodal
pricing (also called marginal locational pricing), which consists in the follow-
ing: ask each generator its cost function, solve the problem of minimizing cost
subject to the fulfilment of the demand requirements, then pay, at each node,
a price equal to the Lagrange multiplier (shadow price) associated to that
demand constraint. With such mechanism prices are local, and hence electric-
ity can be seen as a geographically differentiated divisible good, which is a lever
of market power.

From the generators’ perspective, the choice of the cost function resembles
a bidding problem in a Bayesian Bertrand game (or of a procurement auction,
with the marked difference that the item being sold will partially disappear in
the lines): in such a game, strategic behaviors arise. Notably, this is true even
if there is complete information among generators but transmission costs are
not zero (Escobar and Jofré, 2010).

While auction theory (Krishna, 2009) is a long-standing and active field
– pushed nowadays by the e-commerce giants – this is to our knowledge the
first work that applies auction theory in a context where the good can be lost
in the allocation. Also, despite the extensive literature on electricity market
equilibria (Hobbs et al, 2000; Hu and Ralph, 2007; Wilson, 2008; Ehrenmann
and Neuhoff, 2009) line losses only appear relatively recently in the models
(aside from (Borenstein et al, 2000), who note that it can represent 5 to 10% of
the flow on the line). The existence of a market equilibrium in a context similar
to ours is discussed in (Aussel et al, 2016). A recent paper (Krebs and Schmidt,
2018) shows the uniqueness of market equilibria in the presence of transport
costs. A justification of our market model can be found for instance in (Palma-
Benhke et al, 2013) and (Wood et al, 2013). Also, because the present study
focuses on the losses, we do not add transmission constraints other than the
one induced by the line losses (at some point anything that is sent through
the line is converted to heat).

This work departs from the standard literature on auction theory by
proposing a model with losses. In particular, we do not recover the classical
revenue equivalence theorem in symmetric setting. Furthermore, from a math-
ematical perspective, we observe that the modeling of the line losses regularizes
the solution. This allows the design of the algorithm to compute the (Bayes)
Nash equilibrium. By contrast, such approach is known to loop for first-price
auctions in the classical one item and no line losses setting.

Our contribution is threefold: we adapt Myerson’s seminal work (Myer-
son, 1981) on optimal auction design to line losses and we characterize the
mechanism that minimizes procurement costs in the presence of incomplete
information and transmission losses. We then introduce a fixed point gradi-
ent flow algorithm to compute the Nash equilibrium of the game induced by
the nodal pricing rule. An example of a run of this algorithm is displayed in
Figures 2 and 3. Notably, Figures 2 and 3 reveal the monotonic nature of the
corresponding game. The algorithm allows us to benchmark the Myersonian
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Fig. 1 The binodal market used as a warm-up

rule against the nodal pricing rule and Vickrey–Clarke–Groves mechanism
(VCG).1

Following Borenstein et al (2000) and Escobar and Jofré (2010), we put a
focus on the symmetric binodal setting, that we use as a warm-up before intro-
ducing the general case. Also, we derive a closed form expression of the optimal
mechanism procurement cost when the types are uniformly distributed.

2 Auctions with losses

In this section, we introduce the market model and discuss the allocation rule
of the central operator when the nodal pricing rule is used.

We remind the reader that a standard, forward single item auc-
tion (Krishna, 2009) consists of n buyers that simultaneously bid (bv)v∈[n] for
an item, which is then allocated to the highest bidder in exchange for a pay-
ment p that depends on the auction rules. By contrast, here we deal with the
procurement auctions of a divisible good, which is how the problem naturally
emerges.

Following the approach of Escobar and Jofré (2010), we start with a warm-
up on a simple binodal network, where quantities can be explicitly computed,
before moving to general networks. In what follows, the network will be rep-
resented by an undirected graph (V,E), and for any vertex v ∈ V , −v will be
the set of all the other vertex: −v = V \ {v}.

2.1 Warm-up: binodal network

We start with a simple binodal network that has already been studied in Esco-
bar and Jofré (2010). The main ideas sketched in this section will be fully
justified in the following section in Theorem 1.

We consider an electric network with two vertices generically denoted by
v ∈ V for V = {1, 2} , each of which with a fixed demand d > 0. At each
node, there is a generator with a constant marginal production cost, and it
is possible to transmit any amount of electricity h > 0 between the vertices
through a transmission line. An amount rh2 shall be lost in the line in this
case, for some physical constant r > 0. This modeling approach has been
proposed previously in the literature to account for the energy that is lost in
heat because of the resistivity of the line. More precisely, it corresponds to a
quadratic approximation of the loss in the DC approximation (Escobar and
Jofré, 2010; Wood et al, 2013). The network looks like the one in Figure 1.

1The VCG mechanism is a strategy-proof auction method ensuring participants’ best strategy
is to bid truthfully, with the highest bidder winning but paying the amount equal to the harm
their presence causes to other bidders
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The nodal pricing rule consists in the following: the central operator asks
each generator its marginal cost of production cv and then, using the producer’s
answer bv as being the true costs, solves the problem of minimizing the total
cost b1q1 + b2q2 of production — where qv is the production at vertex v for
v ∈ {1, 2} — subject to the feasibility constraints (for v ∈ {1, 2})

qv − hv,−v + h−v,v ≥
r

2
[h2

1,2 + h2
2,1] + d. (1)

h−v,v corresponds to a positive quantity of energy flowing from −v to v.
The equality constraint corresponds to Kirchhoff’s law. What is produced

and what goes into the vertex minus what goes out, and the thermal loss should
be greater than the local demand. The term r

2 [h
2
1,2 + h2

2,1] corresponds to the
thermal losses (Since at optimum, h1,2.h2,1 = 0, this is equal to r

2 (h1,2+h2,1)
2),

which we assume to be equally covered by the vertices.
If we define

G(x, y) = d+
1

2r

(
x− y

x+ y

)2

− 1

r

(
x− y

x+ y

)
, (2)

and q = 2
[
1−

√
1−2dr
r

]
, then one can show using a standard Lagrangian relax-

ation argument (Escobar and Jofré, 2010) that the production level q⋆v(bv, b−v)
solution to this problem is

q⋆v(bv, b−v) =

G(bv, b−v) if G(bv, b−v) ≥ 0 and G(b−v, bi) ≥ 0
q if G(bv, b−v) ≥ 0 and G(b−v, bi) < 0
0 else,

and the optimal flow associated to this optimal production plan is

ĥ⋆
−v,v(b) =


1
r

[
b−v−bv
b−v+bv

]
if bv ≤ b−v and G(b−v, bv) ≥ 0

q − d if bv ≤ b−v and G(b−v, bv) ≤ 0
0 else.

Then, by definition of the nodal pricing rule, the central operator then asks
generator v to produce a quantity q⋆v and pays him a unit price λv, where λv is
the Lagrange multiplier associated with the feasibility constraint at vertex v:

λv(bv, b−v) =

{
bv if G(bv, b−v) ≥ 0[
2−

√
1−2dr√

1−2dr

]
b−v otherwise.

In our example with one producer per node, such payment rule reduces to
pay-as-bid (first-price).
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2.2 General Network

We now turn our attention to more generic grids. In what follows, if X and Y
are elements of the same Euclidean space, we say that X ≤ Y when xi ≤ yi
for all components i. A function f mapping a Euclidean space to another is
said to be increasing whenever it preserves the order, that is X ≤ Y implies
f(X) ≤ f(Y ). So let (V,E) be an undirected graph, (dv)v∈V a demand vector
and (re)e∈E a vector of coefficients for the quadratic losses, that we assume to
be identical for both directions of the line e. The optimal allocation problem
in this more general setting becomes

min
h,q≥0

∑
v∈V

qvbv (3)

subject to
Cv(q, h) ≤ 0 ∀v ∈ V,

with

Cv(q, h) = dv −
(
qv +

∑
u:(u,v)∈E

hu,v − hv,u −
ru,v
2

(h2
u,v + h2

v,u)
)
.

For any procurement cost vector (bv)v∈V and any vertex v ∈ V , we set, for
strictly positive bid vectors:

Gv(bv, b−v) = dv +
∑

u:(u,v)∈E

1

2ru,v

(
bv − bu
bv + bu

)2

− 1

ru,v

(
bv − bu
bv + bu

)
. (4)

It is useful to observe the similarity between Equation (4) and (2). We can now
reproduce the result of the warm-up for a general network with Theorem 1.

Theorem 1 The optimal allocation is equal to

q⋆v(b) = Gv(λ
⋆
v, λ

⋆
−v) (5)

where (λ⋆v)v∈V is the limit of the iterations of

λ
(k+1)
v = min(gv(λ

(k)
−v), bv), λ

(0)
v = bv (6)

and where for λ−v ∈ R|V |−1
+ , gv(λ−v) = min{λv ∈ R+ : Gv(λv, λ−v) ≤ 0} is the

smallest cost λv such that Gv(λv, λ−v) ≤ 0 (and +∞ if such cost does not exist).

Proof We proceed in two steps: first we show that the iterations defined in (6)
converges, and then, we show the optimality using KKT’s sufficient condition.

To see why the iterations defined in (6) converge, we first observe that
Gv(λv, λ−v) is decreasing in the first variable and increasing in the sec-

ond variable. Indeed ∂Gv(λv, λ−v)/∂λv = −
∑

u:(u,v)∈E
4

ru,v

λ2
u

(λu+λv)3
< 0
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and ∂Gv(λv, λ−v)/∂λu = 4
ru,v

λuλv

(λu+λv)3
> 0 if u is a neighbors of v, and

∂Gv(λv, λ−v)/∂λu = 0 otherwise.
This implies that gv is increasing. To see this, take λ1−v ≤ λ2−v and set λ1v =

gv(λ
1
−v) and gv(λ

2
−v) = λ2v. Then by definition of gv, Gv(λ

2
v, λ

2
−v) ≤ 0, and since Gv

is increasing in the second variable and λ1−v ≤ λ2−v, Gv(λ
2
v, λ

1
−v) ≤ Gv(λ

2
v, λ

2
−v) ≤ 0.

Now with Gv(λ
2
v, λ

1
−v) ≤ 0 and the definition of gv, we proved that λ1v ≤ λ2v. Hence

gv is increasing.

Then, by induction, the iterations λ
(k)
v are decreasing. Furthermore, these

iterations are bounded below by 0 by definition of gv. Hence, the iterations converge.
Now, we set

h⋆u,v =
1

ru,v

(
λ⋆v − λ⋆u
λ⋆v + λ⋆u

)+

and q⋆v = Gv(λ
⋆
v, λ

⋆
−v).

To check the optimality of this putative solution, we introduce L(q, h, λ, µ, γ) the
Lagrangian of the problem:

L(q, h, λ, µ, γ) =
∑
v∈V

qvbv +
∑
v∈V

λvCv(q, h)−
∑
v∈V

qvµv −
∑

(v,u)∈E

γv,uhv,u.

Then by definition of L, we have

∂L(q, h, λ, µ, γ)
∂qv

= bv − λv − µv (7)

and

∂L(q, h, λ, µ, γ)
∂hu,v

= (λu − λv) + (λu + λv)hu,vru,v − γu,v. (8)

We now make the following observations to show that we can find dual variables
(µ⋆, γ⋆) so that the tuple (q⋆, h⋆, λ⋆, µ⋆, γ⋆) of primal and dual variables satisfies the
KKT conditions.

• If Gv(λ
⋆
v, λ

⋆
−v) > 0 then set µ⋆

v = 0, which implies that ∂L(q,h,λ,µ,γ)
∂qv

= 0.

Indeed, suppose Gv(λ
⋆
v, λ

⋆
−v) > 0 then by continuity of Gv, for k greater

than some k0, Gv(λ
(k)
v , λ

(k)
−v) > 0, which implies, by definition of λ(k) that

λk
v = bv, hence bv = λ⋆

v, which we can plug into relation (7).

• If Gv(λ
⋆
v, λ

⋆
−v) = 0, we can set µ⋆

v to satisfy ∂L(q⋆,h⋆,λ⋆,µ⋆,γ)
∂qv

= 0 for any γ.

• If 1
ru,v

(
λ⋆
v−λ⋆

u

λ⋆
v+λ⋆

u

)+
> 0, then we set γ⋆

u,v = 0, which implies

∂L(q⋆, 1
ru,v

(
λ⋆
v−λ⋆

u
λ⋆
v+λ⋆

u

)+
,λ⋆,µ⋆,γ⋆)

∂hu,v
= 0 by relation (8).

• If 1
ru,v

(
λ⋆
v−λ⋆

u

λ⋆
v+λ⋆

u

)+
= 0 we can set γ⋆

u,v so that
∂L(q⋆, 1

ru,v

(
λ⋆
v−λ⋆

u
λ⋆
v+λ⋆

u

)+
,λ⋆,µ⋆,γ⋆)

∂hu,v
=

0.

Therefore, by convexity of the problem, and KKT’s (sufficient) condition (q⋆, h⋆)
solve the optimization problem. □

The economic interpretation is intuitive: if gv(λ
(k)
−v) < bv then the producer

at vertex v will not be allocated anything (since this would be the case for a

linear price of gv(λ
(k)
−v), and the current price is even bigger); if gv(λ

(k)
−v) > bv
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then on the contrary, the producer shall be allocated some production, since the

price should be at least gv(λ
(k)
−v) to make its allocation null; last, if gv(λ

(k)
−v) =

+∞, then it means that imports from neighboring vertices cannot cover the
demand at vertex v (this can be caused by the line saturated: the quadratic
nature of the loss implies that at some point, a marginal amount of electricity
that is sent through the line outbound toward v is fully wasted in loss) we are
in a situation of monopolistic pricing and inelastic demand, and so without
addition to the model, the price at this vertex is likely to be unbounded.

At each step k, the algorithm adapts the prices, until convergence is met.

3 Optimal Mechanism

We now derive Theorem 2, which is an adaptation of (Myerson, 1981) to our
context. For the sake of brevity we only provide the main result, since the full
proof replicates Myerson’s (Myerson, 1981).

We assume the marginal cost cv of generator v ∈ V is drawn from a dis-
tribution with density fv (and cumulative Fv) which has full support over
Cv = [cm, cM ]. The parameter cv is known by firm v, but its competitors and
the central operator only know the distribution fv. We set C =

∏
v∈V Cv and

f(c) =
∏

v∈V fv(cv).
A direct mechanism M = (q, h, x) consists of an assignment rule q :

C −→ (R+)
V and h : C −→ (R+)

E a payment rule x : C −→ R2. By the reve-
lation principle2 (Krishna, 2009) the central operator can restrict to incentive
compatible, direct mechanisms, i.e. such that for cv, c

′
v ∈ Cv

Uv(cv, cv; (q, h, x)) ≥ Uv(cv, c
′
v; (q, h, x)) (9)

and
Uv(cv, cv; (q, h, x)) ≥ 0 for all cv ∈ Cv, (10)

where Uv is the ex-ante expected utility of a buyer of type cv when he
participates and declares c′v

Uv(cv, c
′
v; (q, h, x)) = Ec−v [xv(c

′
v, c−v)− cvqv(c

′
v, c−v)].

The first set of constraints, (9) are the incentive compatibility constraints:
each participant should have no incentive to report anything but its true,
private production cost. The second set of constraints, (10) are the voluntary
participation constraints. They impose that agent should be better off when
they participate in the mechanism. Otherwise, one could simply propose the
following obviously broken solution, that says that the producer should give
their production for free. It is clear that presented with such a proposal, the
producer would simply choose to leave the auction.

2The revelation principle allows to restrict the search of mechanism to mechanism where the
agents are incentivized to tell the truth. This comes from a composition argument: if β is an
equilibrium policy for mechanism M , then M ◦ β is outcome equivalent to M , and incentive
compatible.
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In the following, we will use the standard simplifying assumption that the

function Jv(cv) = cv +
Fv(cv)
fv(cv)

, defined on the support of fv is increasing in cv.

For completeness, we mention that this assumption can be removed using a
technical trick that was introduced by Myerson in his seminal paper (Myerson,
1981), but such consideration is out of the scope of this study.3 Among incen-
tive compatible mechanisms, a mechanism is said feasible if it satisfies (9), (10)
and

qv(c) +
∑

u:(u,v)∈E

hu,v(c)− hv,u(c)−
ru,v
2

(h2
u,v(c) + h2

v,u(c)) ≥ dv (11)

for all c ∈ C and v ∈ V . For an incentive compatible direct revelation
mechanism M = (q, h, x), the central operator’s expected cost is given by∫

C

∑
v∈V

xv(c)f(c)dc. (12)

Therefore, the problem of the planner can be written as minimizing (12)
subject to (9), (10) and (11):

min
(q,h,x)

∫
C

∑
v∈V

xv(c)f(c)dc

s.t. qv(c) +
∑

u:(u,v)∈E

hu,v(c)− hv,u(c)−
ru,v
2

(h2
u,v(c) + h2

v,u(c)) ≥ dv

Uv(cv, cv; (q, h, x)) ≥ 0

Uv(cv, cv; (q, h, x)) ≥ Uv(cv, c
′
v; (q, h, x)) ∀(c, c′).

Myerson’s Nobel prize winning result, translated in our context, states that
this apparently very complex optimization problem can be solved by leveraging
the optimal allocation derived in the previous section (that is, q⋆).

Theorem 2 (Myerson’s auction) An optimal mechanism is given by

q̂(c) = q⋆([Jv(cv)]v∈V )

ĥ(c) = h⋆([Jv(cv)]v∈V )

x̂v(c) = cv q̂v(c) +

cM∫
cv

q̂v(s, c−v)ds

The main arguments of the proof of this result, which is an adaptation of
Myerson’s to our context, are provided in the appendix.

3this technical trick, that relies on a convexification argument, is called the ironing trick
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4 Nash Equilibrium and algorithm

Next we discuss how we numerically estimate the procurement cost when using
the nodal pricing rule.

The nodal pricing rule induces a game. First, the two generators indepen-
dently draw a marginal cost cv ∈ Cv according to fv, and then play a Bayesian
game where the quantity asked from a generator that bids a cost x and con-
fronts a group of generators who bid a cost vector y is given by qv(x, y), and
the unit price paid to him is x. A strategy for the player-generator v is a func-
tion bv : Cv −→ R+. Generators maximize their (expected) profit πv(x, c, b−v),
given by

πv(x, c, b−v) =

∫
(x− c)qv(x, b(c−v))dF−v(c−v). (13)

Recall that in a Nash equilibrium b∗, player v shall play the profit max-
imizing bid against b∗−v for the cost he draws, otherwise said, b∗v(c) ∈
argmaxxπv(x, c, b

∗
−v).

Remark 1 By adapting a classical result from forward auctions (see for instance
(Krishna, 2009)), to procurement auctions, we see that, for two players, when r = 0
and f1 = f2, the symmetric equilibrium strategy of the game induced by nodal
pricing is bv(cv) = E(c−v∥c−v > cv). The proof mostly relies on the fact that the
allocation goes to the lowest value at equilibrium. If we take for instance a uniform
distribution on [0, 1], the equilibrium strategy is c → 0.5(1 + c). For r > 0, this
observation does not hold anymore, and we could not find a closed form solution.

Computing the Nash equilibrium of a first-price auction is not trivial (Mar-
shall et al, 1994; Wang et al, 2020; Fibich and Gavish, 2012, 2011; Gayle
and Richard, 2008) and is a research track in itself. In the symmetric set-
ting, we benefit from a simplification that allows for a closed-form expression
(Krishna, 2009). However, such a trick does not apply in our setting because
the allocation is not binary.

So we rely on a simple fixed-point gradient flow algorithm (that minimizes
for each player the profit given in Equation (13)), described in Algorithm 1
to search for a Nash equilibrium, and display in Figures 2 and 3 the resulting
iterations to illustrate its experimental success. A few equilibrium strategies
for different values of r are shown in Figure 7. The algorithm receives as
parameters a learning rate ϵ, a number of steps Niter, and an initial policy
profile b0.

The algorithm is inspired by the Best Reply iterations for games with
strategic complementarities (Topkis, 1998; Vives, 2005). We compensate for
the violation of the strategic complementarity assumption with a smoother
iteration procedure. Starting from an initial strategy profile that is greater (or
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smaller) than the equilibrium (using the partial order induced by R), the iter-
ations slowly go down (or up) until convergence is reached, using infinitesimal
gradient steps. 4. The philosophy of the algorithm is summarized in Theorem 3.

Theorem 3 If the iterations of Algorithm 1 are all increasing (or all decreasing) and
bounded, then they converge to a stationary point b⋆ of π: ∂bπv(b

v
⋆(c), c, b

−v
⋆ ) = 0. If,

moreover, b → πv(b, c, b
−v
⋆ ) is pseudo-concave, then b⋆ is a Nash equilibrium.

Proof The iterations are increasing and bounded, so they pointwisely converge to a
point bv⋆(c). By definition of the algorithm, we should have ∂bπv(b

v
⋆(c), c, b

−v
⋆ ) = 0. If

we suppose in addition pseudo-concavity, bv⋆(c) maximizes b → πv(b, c, b
−v
⋆ ). □

The algorithm was implemented in Python 3. The numerical convergence
of the ascending and the descending dynamics to the same strategy profile is
an argument for the uniqueness of the equilibrium.

0.0 0.2 0.4 0.6 0.8 1.0
private cost
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2.00

eq
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riu

m
 b

id

(r,a)=(0.25,2)

ascending dynamic
descending dynamic

Fig. 2 Convergence of the gradient flow algorithm for (r, a) = (0.25, 2)

Algorithm 1 Fixed point gradient flow algorithm

Require: (ϵ, b0, Niter)
b← b0
for i ∈ [Niter] do

for v ∈ V do
bv(c)← bv(c) + ϵ∂bπv(b

v(c), c, b−v)
end for

end for
return b

4The connection with games with strategic complementarities is further discussed in this
unpublished work https://arxiv.org/abs/2310.02898

https://arxiv.org/abs/2310.02898
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Fig. 3 Convergence of the gradient flow algorithm for (r, a) = (0.1, 1)

5 Results

5.1 Simulation

For the gradient flow algorithm, we need an estimation of the gradient of the
interim payoff of each producer for each value of the cost:∫

q⋆v(bv, b−v(c−v))(bv − c)dF−v(c−v). (14)

To compute the argument of the multi-integral, we observe that for any b such
that for b′ in a neighborhood of b, q⋆v(b

′) = Gv(b
′
v, b

′
−v), we have ∂q

⋆
v(b)/∂bv =

∂Gv(bv, b−v)/∂bv. When this is not satisfied, we can estimate the gradient
using a finite difference. The multiple integrals are estimated with Monte Carlo.

We demonstrate the algorithm on the 6-vertex network displayed in
Figure 8. We took r = 0.05 and two possible production cost values per node,
set at random uniformly between 1 and 2. Convergence was checked by com-
paring the outcomes of the ascending and descending dynamics of the gradient
flow algorithm. The result is displayed on Figure 9.

We now come back to the binodal symmetric setting of Figure 1, which can
be considered an extension of a textbook situation, and for which there is an
extensive corpus of results in the absence of losses (Vickrey, 1961; Clarke, 1971;
Groves, 1973; Krishna, 2009). By the revenue equivalence principle, if r = 0
then the optimal pricing, nodal pricing and Vickrey–Clarke–Groves mechanism
(VCG) have the same costs. When there are no transmission losses, the central
operator procures a single object, which corresponds to the total amount of
energy needed in the network. Note that the mechanisms are different, since in
the nodal pricing mechanism generators conceal their true cost, while for VCG
and Myerson’s they reveal their true cost. Still, in expectation, the mechanism
yields the same procurement cost.
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The equivalence, however, does not hold for r > 0. In this case, we have
differentiated goods, and the central operator purchases energy from both
generators. The central operator solves the dispatcher problem with either the
“virtual costs” cv + F (cv)/f(cv) in the optimal mechanism, or the bids b(cv)
in the nodal pricing mechanism, and buys accordingly. Moreover, it pays the
established transfers in the former case xv(cv, c−v) and the asking price b(cv)
in the latter. The mechanisms do not have the same assignment anymore. For
two vertices, VCG payment becomes (q̄ − q⋆−v(bv, b−v))b−v.

We display in Figures 4 and 5 the procurement and production costs of
the nodal, VCG and Myersonian mechanisms as a function of r. We took
f1 = f2 the uniform distribution on [0, 1]. We first observed the linear aspect
of the optimal procurement cost, which is commented in the next remark.
The producer margin seems constant for the optimal procurement mechanism,
whereas it spikes for the nodal pricing rule. We also observe that the optimal
procurement mechanism is efficient, that is, it has the same production cost
as VCG. This is because in a symmetric setting, the optimal procurement
mechanism and the VCG mechanism have the same allocation. By contrast,
the procurement cost of the Myersonian mechanism is strictly lower than the
procurement cost of the VCG mechanism.

0.05 0.10 0.15 0.20 0.25
r

0.6

0.8

1.0

1.2

1.4

1.6

1.8

co
st

Myerson
VCG
nodal

Fig. 4 Production (below) and procurement (above) costs as functions of r for different
mechanisms for uniform distribution

5.2 Explicit Procurement Cost for Uniformly
Distributed Values

This section is motivated by the surprise we had when computing the optimal
procurement cost as a function of r: the result, displayed in Figure 4 looks
like an affine function of r. We hence wanted to validate our observation with
an explicit computation. The result was quite unexpected: the curve is not a
straight line, which is something we verified in Figure 6. When the values are
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0.05 0.10 0.15 0.20 0.25
r

1.4

1.6

1.8

2.0

2.2

2.4

co
st

Myerson
VCG
nodal

Fig. 5 Production (below) and procurement (above) costs as functions of r for different
mechanisms for power law with parameter 2

uniformly distributed on [0, 1], the expected cost paid by the ISO is equal to
(see appendix)

4

3r

(
(x2

0 + 2x0)(2rd− 1) + x3
0 + 2x2

0 + 5x0

(1 + x0)2
− 2 ln(1 + x0)

)
,

where x0 = 1−
√
1− 2rd.

0.0 0.1 0.2 0.3 0.4 0.5
r

1.35

1.40

1.45

1.50

1.55

1.60

1.65

co
st

analytic expression
affine approx
numerical estimate

Fig. 6 Nonlinearity of the optimal procurement cost

6 Conclusion

We discussed an extension of auction theory to a graphical setting. This exten-
sion was motivated by electricity markets. A unique feature of this model
is that some of the good that travels on the network is lost in the process.
An interesting side effect of this phenomenon is that the allocation rules are
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smooth functions of the bids. We identified an algorithm to compute equilib-
rium that — in the context of our study— revealed “practical” where other
approaches failed. We did not, however, provide a sharp characterization of
the settings where the monotony of the dynamics will be guaranteed, this shall
be an interesting path for further work. Another interesting venue for further
investigation could be the design of simple or adaptive mechanisms for this
setting.

Acknowledgments. AJ was partially supported by CMM Basal. We thank
the anonymous reviewers for their constructive feedback.

0.0 0.2 0.4 0.6 0.8 1.0
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0.6

0.8

1.0
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1.4
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bi
d

r = 0.05
r = 0.1
r = 0.2
r = 0.3

Fig. 7 Some strategies for different values of r. As r comes closer to 0, the numerical scheme
requires finer steps.

A proof of the explicit procurement cost
formula in Remark 5.2

For (a, b) ∈ [0, 1], let q̃(a, b) be the optimal mechanism allocation (r is omitted
to ease the reading).

SC(r) =

∫ 1

0

∫ 1

0

(
J(a)q̃(a, b) + J(b)q̃(b, a)

)
dbda, (15a)

equals, by symmetry, and using the fact that J(a) = 2a and q̃(a, b) =
q(J(a), J(b)) = q(2a, 2b) = q(a, b)

2

∫ 1

0

∫ a

0

(
J(a)q(a, b) + J(b)q(b, a)

)
dbda = (15b)

4

∫ 1

0

∫ a

0

(
aq(a, b) + bq(b, a)

)
dbda (15c)
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which decomposes as the sum of

4

∫ 1

0

∫
b<a

0<q(a,b)

aq(a, b) + bq(b, a)dbda (15d)

and

4q̄

∫ 1

0

∫
b<a

0=q(a,b)

bdbda (15e)

Let X(a, b) = a−b
a+b , P (X) = d + 1

2rX
2 − 1

rX. Then x0 is the unique solu-
tion of P (x) = 0 with 0 ≤ x ≤ 1. For 1 > a > b > 0 q(a, b) ≥ 0 ⇐⇒
P (X(a, b)) ≥ 0 ⇐⇒ X(a, b) ≤ x0. When such a condition is satisfied,
q(b, a) = P (−X(a, b)). Therefore (15d) rewrites, using the change of variable
x = (a− b)/(a+ b) ⇐⇒ b = a(1− x)/(1 + x) and then Fubini’s Lemma

4

∫ 1

0

∫
0<x<1
x≤x0

(
aP (x) + a

1− x

1 + x
P (−x)

) 2a

(1 + x)2
dxda (15f)

= 8

∫ 1

0

a2da

∫ x0

0

(
P (x) +

1− x

1 + x
P (−x)

) 1

(1 + x)2
dx

=
8

3r

∫ x0

0

2dr − x2

(1 + x)3
dx.

Now, since

2dr −X2

(1 +X)3
=

2rd− 1

(1 +X)3
+

2

(1 +X)2
+
−1

1 +X
, (15g)

(15d) equals

8

3r

(
2rd− 1

2

x2
0 + 2x0

(1 + x0)2
+

2x0

1 + x0
− ln(1 + x0)

)
(15h)

Similarly, we get for (15e) that

4q̄

∫ 1

0

∫
b<a

0=q(a,b)

bdbda (15ia)

= 4q̄

∫ 1

0

∫ a

b[X(a, b) > x0]bdbda. (15ib)

which is equal, by the change of variable X(a, b) = x, to

8q̄

∫ 1

0

a2da

∫ 1

x0

1− x

(1 + x)3
dx = (15ic)
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1
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Fig. 8 Network for the numerical experiment of Section 5.

8

3
q̄

∫ 1

x0

2

(1 + x)3
− 1

(1 + x)2
dx. (15id)

We end up with

4x0

3r

(
1− x0

1 + x0

)2

. (15ie)

Finally (remembering that x0 is implicitly a function of r)

SC(r) =
8

3r
(
2rd− 1

2

x2
0 + 2x0

(1 + x0)2
+

2x0

1 + x0
− ln(1 + x0)) +

4x0

3r

(
1− x0

1 + x0

)2

.

B Steps for the proof of Theorem 2

We now derive Theorem 2, which is an adaptation of Myerson (1981) to our
context. For the sake of brevity we only pinpoint the main intermediate results,
since the full proof replicates Myerson’s.

Lemma 1. A mechanism (q, h, x) is feasible iff it satisfies (11) and for all
v ∈ V

• bv → Eqv(bv, b−v) is non-increasing in bv,

• Uv(bv, bv; (q, h, x)) = Uv(cM , cM ; (q, h, x)) +
cM∫
bv

Eqv(s, b−v)ds,

• Uv(cM , cM ; (q, h, x)) ≥ 0.

Proof See proof of Lemma 2 in Myerson (1981). □
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Fig. 9 Result of the equilibrium estimation for the ascending and descending. The color of
a point indicates the vertex it corresponds to. The two dynamics coincide.

Next comes a classic reformulation of the expected payment for a feasible
mechanism.

Lemma 2. The expected payment of v ∈ V in a feasible mechanism is∫
C
qv(c)[cv +

Fv(cv)
fv(cv)

]f(c)dc.

Proof For readability, we omit the index v when not needed. If we set V (s) =
U(s, s; (q, h, x)), and Q : bv → Eqv(bv, b−v) then we get, using Lemma 1,∫

C

x(c)f(c)dc =

∫
C

cvqv(cv, c−v)f(c)dc+

∫
Cv

V (cv)dcv.

The second term on the right-hand side can be written (using Fubini’s lemma)∫
Cv

V (cv)dcv =

∫
Cv

[V (cM ) +

cM∫
cv

Q(sv)dsv]f(cv)dcv

= V (cM ) +

∫
Cv

Q(s)[

s∫
cm

f(c)dc]ds

= V (cM ) +

∫
Cv

Q(c)F (c)dc



Springer Nature 2021 LATEX template

18 Procurement Auctions with Losses

= V (cM ) +

∫
Cv

∫
C−v

q(cv, c−v)F (cv)dcv

= V (cM ) +

∫
C

qv(c)
Fv(cv)

fv(cv)
f(c)dc

Replacing this last expression and noticing that in any optimal mechanism
V (cM ) = 0 the result follows.

□

With these two lemmas, we can characterize a solution to the auction design
problem.

Lemma 3. If for a mechanism (q̂, ĥ, x̂) the assignment function (q̂, ĥ)
minimizes

min
q,h

∫
C

∑
v∈V

qv(c)[cv +
Fv(cv)

fv(cv)
]f(c)dc

subject to the constraints that bv → Eqv(bv, b−v) is non-increasing in bv and
the demand constraint (11), and the payment function x̂ satisfies

x̂v(c) = q̂v(c)cv +

cM∫
cv

q̂v(s, c−v)ds

then (q̂, ĥ, x̂) is an optimal mechanism.
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