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σ-algebra

• A set algebra over a set D is a subset D ⊂ 2D, containing D,
and which is stable under complement, finite union and
intersection

• A σ-algebra over a set D is a subset D ⊂ 2D, containing D,
and which is stable under complement and countable union
and intersection
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Agents, action spaces and Nature space

• Let A be a (finite or infinite) set,
whose elements are called agents (or decision-makers)

• With each agent a ∈ A is associated a measurable space

( Ua︸︷︷︸
set of

actions
for agent a

, Ua︸︷︷︸
σ-algebra

⊂2Ua

)

• With Nature is associated a measurable space

(Ω,F)

(at this stage of the presentation, we do not need to equip (Ω,F)

with a probability distribution, as we only focus on information)
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The configuration space is a product space

Configuration space
The configuration space is the product space

H =
∏
a∈A

Ua × Ω

equipped with the product σ-algebra, called configuration σ-algebra

H =
⊗
a∈A

Ua ⊗ F

so that (H,H) is a measurable space
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Example of configuration space

Ua = {Ta,Ba}, Ub = {Rb, Lb}, Ω = {ω+, ω−}
Ua = 2Ua , Ub = 2Ub , F = 2Ω

(Ta,Lb,ω−) (Ba,Lb,ω−)

(Ba,Lb,ω+)(Ta,Lb,ω+)

(Ta,Rb,ω−) (Ba,Rb,ω−)

(Ta,Rb,ω+) (Ba,Rb,ω+)
(H,H)

•

••

•

• •

• •

• product configuration space

H =
∏
a∈A

Ua × Ω

• product configuration
σ-algebra

H =
⊗
a∈A

Ua ⊗ F

represented by
the partition of its atoms
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”Alice and Bob” information partitions

(Ba, Lb) (Ba,Rb)

(Ta,Rb)(Ta, Lb)

Ia

•

••

•
(Ba, Lb) (Ba,Rb)

(Ta,Rb)(Ta, Lb)

Ib

• •

••

• Ib = {∅, {Ta,Ba}} ⊗ {∅, {Rb, Lb}}
Bob knows nothing

• Ia = {∅, {Ta,Ba}} ⊗ {∅, {Rb}, {Lb}, {Rb, Lb}}
Alice knows what Bob does
(as she can distinguish between Bob’s actions {Rb} and {Lb})
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”Alice, Bob and a coin tossing” information partitions

(Ta,Lb,ω−) (Ba,Lb,ω−)

(Ba,Lb,ω+)(Ta,Lb,ω+)

(Ta,Rb,ω−) (Ba,Rb,ω−)

(Ta,Rb,ω+) (Ba,Rb,ω+)
Ia

•

••

•

• •

• •

(Ta,Lb,ω−) (Ba,Lb,ω−)

(Ba,Lb,ω+)(Ta,Lb,ω+)

(Ta,Rb,ω−) (Ba,Rb,ω−)

(Ta,Rb,ω+) (Ba,Rb,ω+)
Ib

•

••

•

• •

• •

Ib =

Bob does not know what Alice does︷ ︸︸ ︷
{∅, {Ta,Ba}} ⊗{∅,Ub} ⊗

Bob knows Nature’s move︷ ︸︸ ︷
{∅, {ω+}, {ω−}, {ω+, ω−}}

Ia = {∅,Ua} ⊗ {∅, {Rb}, {Lb}, {Rb, Lb}}︸ ︷︷ ︸
Alice knows what Bob does

⊗{∅, {ω+}, {ω−}, {ω+, ω−}}︸ ︷︷ ︸
Alice knows Nature’s move 7



Strategies

• H =
∏

a∈A Ua × Ω is the common product domain
• The agent strategy λa is Ia-measurable

λa : (H,H)→ (Ua,Ua)

λ−1
a (Ua) ⊂ Ia

for all a ∈ A

For instance, λ−1
a (Ua) ⊂ {∅,H}︸ ︷︷ ︸

no information

⇐⇒ λa is constant on H
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Relation with SCMs1

An SCM formulation takes the form

• (λa)a∈A: assignments
• P : A→ 2A: parental mapping

Ua(ω) = λa
(
UP(a)(ω), ωa

)
, ∀ω ∈ Ω , ∀a ∈ A

1Structural Causal Models
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Information Dependency Model (IDM)

1. A product space H =
∏

a∈A Ua × Ω

2. A collection (Ia)a∈A of subalgebras of H =
⊗

a∈A Ua ⊗ F
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Information Dependency Model (IDM)

1. A product space H =
∏
a∈A

(
Ua × Ωa

)
• H = Ub ⊗

⊗
b∈A

Fb is the product algebra of H

2. A collection (Ia)a∈A of subalgebras of H
• Ia ⊂

(⊗
b∈A

Ub

)
⊗ Fa

The SCM is now defined by the Ia-measurability conditions

λ−1
a (Ua) ⊂ Ia , ∀a ∈ A
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Information Dependency Model (IDM)

1. A product space H =
∏
a∈A

(
Ua × Ωa

)
• H = Ub ⊗

⊗
b∈A

Fb is the product algebra of H

2. A collection (Ia)a∈A of subalgebras of H
• Ia ⊂

(⊗
b∈A

Ub

)
⊗ Fa

The SCM is now defined by the Ia-measurability conditions

λ−1
a (Ua) ⊂ Ia , ∀a ∈ A
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How is parentality encoded?

X YW

Z

X is a parent of Y

In SCMs, a random variable Y gets the arguments
of its assignment function from its parents

Y(ω) = λY
(
X(ω), Z(ω), ω

)
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Context-specific independence (CSI)

A ⊥⊥ B when C = 1

• A generalization of indepence between random variables
• Used in many applications

→ CSI for FREE with the Information Dependency Model (IDM)
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Conditional Parentality

X YW

Z

X is a parent of Y
UNLESS Z > 1

Z > 1
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(W,H)-Conditional parentality

• W ⊂ A: conditioning agents (variables)
• H ⊂ H: localization

Definition
For a given agent a ∈ A, the conditional parents set PW,Ha
is the smallest subset B ⊂ A such that

Ia ∩ H ⊂
( ⊗
b∈B∪W

Ub

)
⊗ Fa ∩ H

15



Conditional parentality: conditioning on the context

X YW

Z

X is a parent of Y
UNLESS Z > 1

Z > 1

P∅,{Z>1}Y = {Z}
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Conditional parentality: conditioning on a variable

X YW

Z

P∅,HY = {Z, X}

P{Z},HY = {X}

P{X},HY = {Z}

P{X,Z},HY = ∅

→ an alternative way of expressing that a path is blocked
Very handy for algebric manipulations
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topological closure

• W ⊂ A: conditioning agents (variables)
• H ⊂ H: localization

Definition
For a given agent a ∈ A, the conditional parents set PW,Ha
is the smallest subset B ⊂ A such that

Ia ∩ H ⊂
( ⊗
b∈B∪W

Ub

)
⊗ Fa ∩ H

We denote by B̄ (or B̄W,H) the topological closure of B, which is the
smallest subset of A that contains B and its own parents under PW,H
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Modeling interventions



Atomic intervention

IX ← (IX ⊗ {I = 0}) ∪ ({∅,H} ⊗ {I = 1})
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Atomic intervention

IX ← (IX ⊗ {I = 0})︸ ︷︷ ︸
normal regime

∪ ({∅,H} ⊗ {I = 1})︸ ︷︷ ︸
intervention

X YW

Z

Intervention not acti-
vated, I = 0

I

X YW

Z

Intervention activated,
I = 1

I
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Application2

Can we estimate Pr(Y | do(X)) from the observational distribution?

X YW

Z
W = 1

2Example taken from Tikka et al. 2019
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Application3 (hand waving style)

X YW

Z

I

We picture the original
graph, with the addi-
tional node

W = 1

3We do it in the graphical world because it is possible to do so. Note however that
Information Dependency Models can deal with more complex situations
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X YW

Z

we start with the situa-
tion I = 1

I

X YW

Z

By independence, we
can set W = 1

I

W = 1

X YW

Z

We now set I = 0

I

W = 1

Hence P(Y | do(X)) = P(Y | X,W = 1)
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Topological separation



Topological separation

Definition (Topological Separation)
We say that B and C ⊂ A are (conditionally) topologically separated
(w.r.t. (W,H)), and write

B ‖
t
C | (W,H),

if there exists WB,WC ⊂ W such that

WB tWC = W and B ∪WB ∩ C ∪WC = ∅
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Main result

Theorem

Y ‖
t
Z | (W,H) =⇒ Pr (UY | UW ,UZ̄,H) = Pr (UY | UW ,H)
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Illustration



Example 1

Are Y1 and Y2 independent when conditioned on W?

Figure 1: The split of W is a piece of information that can be useful 26



Example 2

X1 X2

Y1 Y2ξ1 ξ2

Figure 2: Are the Y ’s independent when conditioning on the X’s ?
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Example 2

X1 X2

Y1 Y2ξ1 ξ2

Figure 3: Let WXi = Yi, for i = 1, 2. The closure of X1 ∪ Y1 (resp. X2 ∪ Y2), with
the edges followed to build the closure, is in red (resp. blue).
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Non-atomic interventions for free

Figure 4: From [Correa2020]
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Topological separation
extends d-separation
to more general settings



Topological separation and d-separation

Theorem

Let (V, E) be a graph, that is, V is a set and E ⊂ V × V , and let W ⊂ V
be a subset of vertices, we have the equivalence

b ‖
t
c | W ⇐⇒ b ‖

d
c | W

(
∀b, c ∈ Wc)
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Proofing toolbox: binary relations



Binary relation

We define

• Conditional parentality relation
• Conditional ancestry relation
• Conditional common cause relation
• Conditional ”cousinhood relation”
• t-separation relation
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An illustration of equational reasoning
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An illustration of equational reasoning
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Conclusion



Summary

• Information Algebras: an alternative language to describe
causal dependencies

• IDM: a generalization of causal graphs
• Topological separation, as an alternative definition of
d-separation
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Making the case for Algebraic Causality

• Unlock mathematical toolboxes
• Unifying, generalizing and versatile framework for causality
• Elegant style of expression and proof: equational reasoning

• compositionality
• binary relations

• Potential to bridge causality, game theory, control and
reinforcement learning
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