Causality with Information Algebras

Causality Discussion Group, October 2023

Benjamin Heymann, Michel De Lara, Jean-Philippe Chancelier

BH: Criteo AI LAb, Paris, France
MDL and JPC: Cermics, École des Ponts, Marne-la-Vallée, France

σ-algebra

- A set algebra over a set \mathbb{D} is a subset $\mathcal{D} \subset 2^{\mathbb{D}}$, containing \mathbb{D}, and which is stable under complement, finite union and intersection
- A σ-algebra over a set \mathbb{D} is a subset $\mathcal{D} \subset 2^{\mathbb{D}}$, containing \mathbb{D}, and which is stable under complement and countable union and intersection

Agents, action spaces and Nature space

- Let A be a (finite or infinite) set, whose elements are called agents (or decision-makers)
- With each agent $a \in A$ is associated a measurable space

- With Nature is associated a measurable space (Ω, \mathcal{F})
(at this stage of the presentation, we do not need to equip (Ω, \mathcal{F}) with a probability distribution, as we only focus on information)

The configuration space is a product space

Configuration space
The configuration space is the product space

$$
\mathbb{H}=\prod_{a \in A} \mathbb{U}_{a} \times \Omega
$$

equipped with the product σ-algebra, called configuration σ-algebra

$$
\mathcal{H}=\bigotimes_{a \in A} \mathcal{U}_{a} \otimes \mathcal{F}
$$

so that $(\mathbb{H}, \mathcal{H})$ is a measurable space

Example of configuration space

$$
\begin{aligned}
& \mathbb{U}_{a}=\left\{T_{a}, B_{a}\right\}, \mathbb{U}_{b}=\left\{R_{b}, L_{b}\right\}, \Omega=\left\{\omega^{+}, \omega^{-}\right\} \\
& \mathcal{U}_{a}=2^{\mathbb{U}_{a}}, \mathcal{U}_{b}=2^{\mathbb{U}_{b}}, \mathcal{F}=2^{\Omega}
\end{aligned}
$$

- product configuration space

$$
\mathbb{H}=\prod_{a \in A} \mathbb{U}_{a} \times \Omega
$$

- product configuration σ-algebra

$$
\mathcal{H}=\bigotimes_{a \in A} \mathcal{U}_{a} \otimes \mathcal{F}
$$

represented by
the partition of its atoms

"Alice and Bob" information partitions

- $\mathcal{J}_{b}=\left\{\emptyset,\left\{T_{a}, B_{a}\right\}\right\} \otimes\left\{\emptyset,\left\{R_{b}, L_{b}\right\}\right\}$ Bob knows nothing
- $\mathcal{J}_{a}=\left\{\emptyset,\left\{T_{a}, B_{a}\right\}\right\} \otimes\left\{\emptyset,\left\{R_{b}\right\},\left\{L_{b}\right\},\left\{R_{b}, L_{b}\right\}\right\}$

Alice knows what Bob does
(as she can distinguish between Bob's actions $\left\{R_{b}\right\}$ and $\left\{L_{b}\right\}$)

"Alice, Bob and a coin tossing" information partitions

Strategies

- $\mathbb{H}=\prod_{a \in A} \mathbb{U}_{a} \times \Omega$ is the common product domain
- The agent strategy λ_{a} is \mathcal{J}_{a}-measurable

$$
\begin{aligned}
& \lambda_{a}:(\mathbb{H}, \mathcal{H}) \rightarrow\left(\mathbb{U}_{a}, \mathcal{U}_{a}\right) \\
& \lambda_{a}^{-1}\left(\mathcal{U}_{a}\right) \subset \mathcal{J}_{a}
\end{aligned}
$$

for all $a \in \mathbb{A}$
For instance, $\lambda_{a}^{-1}\left(\mathcal{U}_{a}\right) \subset \underbrace{\{\emptyset, \mathbb{H}\}}_{\text {no information }} \Longleftrightarrow \lambda_{a}$ is constant on \mathbb{H}

Relation with SCMs ${ }^{1}$

An SCM formulation takes the form

- $\left(\lambda_{a}\right)_{a \in A}$: assignments
- $P: A \rightarrow 2^{A}$: parental mapping

$$
U_{a}(\omega)=\lambda_{a}\left(U_{P(a)}(\omega), \omega_{a}\right), \quad \forall \omega \in \Omega, \quad \forall a \in A
$$

[^0]
Information Dependency Model (IDM)

1. A product space $\mathbb{H}=\prod_{a \in A} \mathbb{U}_{a} \times \Omega$
2. A collection $\left(\mathcal{J}_{a}\right)_{a \in A}$ of subalgebras of $\mathcal{H}=\bigotimes_{a \in A} \mathcal{U}_{a} \otimes \mathcal{F}$

Information Dependency Model (IDM)

1. A product space $\mathbb{H}=\prod_{a \in A}\left(\mathbb{U}_{a} \times \Omega_{a}\right)$

- $\mathcal{H}=\mathcal{U}_{b} \otimes \bigotimes_{b \in A} \mathcal{F}_{b}$ is the product algebra of \mathbb{H}

2. A collection $\left(\mathcal{J}_{a}\right)_{a \in A}$ of subalgebras of \mathcal{H}

$$
\cdot \mathcal{J}_{a} \subset\left(\bigotimes_{b \in A} \mathcal{U}_{b}\right) \otimes \mathcal{F}_{a}
$$

Information Dependency Model (IDM)

1. A product space $\mathbb{H}=\prod_{a \in A}\left(\mathbb{U}_{a} \times \Omega_{a}\right)$

- $\mathcal{H}=\mathcal{U}_{b} \otimes \bigotimes_{b \in A} \mathcal{F}_{b}$ is the product algebra of \mathbb{H}

2. A collection $\left(\mathcal{J}_{a}\right)_{a \in A}$ of subalgebras of \mathcal{H}

$$
\cdot J_{a} \subset\left(\bigotimes_{b \in A} u_{b}\right) \otimes \mathcal{F}_{a}
$$

The SCM is now defined by the \mathcal{J}_{a}-measurability conditions

$$
\lambda_{a}^{-1}\left(\mathcal{U}_{a}\right) \subset \mathcal{J}_{a}, \quad \forall a \in A
$$

How is parentality encoded?

$$
X \text { is a parent of } Y
$$

In SCMs, a random variable Y gets the arguments of its assignment function from its parents

$$
Y(\omega)=\lambda_{Y}(X(\omega), Z(\omega), \omega)
$$

Context-specific independence (CSI)

$A \Perp B$ when $C=1$

- A generalization of indepence between random variables
- Used in many applications
\rightarrow CSI for $\mathbb{F R} \mathbb{R E E}$ with the Information Dependency Model (IDM)

Conditional Parentality

(W, H)-Conditional parentality

- $W \subset A$: conditioning agents (variables)
- $H \subset \mathbb{H}:$ localization

Definition
For a given agent $a \in A$, the conditional parents set $\mathcal{P}^{W, H} a$ is the smallest subset $B \subset A$ such that

$$
\mathcal{J}_{a} \cap H \subset\left(\bigotimes_{b \in B \cup W} U_{b}\right) \otimes \mathcal{F}_{a} \cap H
$$

Conditional parentality: conditioning on the context

$$
\mathcal{P}^{\emptyset,\{Z>1\}} Y=\{Z\}
$$

Conditional parentality: conditioning on a variable

$$
\begin{aligned}
& \mathcal{P}^{\emptyset, \mathbb{H}} Y=\{Z, X\} \\
& \mathcal{P}^{\{Z\}, \mathbb{H}} Y=\{X\} \\
& \mathcal{P}^{\{X\}, \mathbb{H} Y}=\{Z\} \\
& \mathcal{P}^{\{X, Z\}, \mathbb{H}} Y=\emptyset
\end{aligned}
$$

\rightarrow an alternative way of expressing that a path is blocked
Very handy for algebric manipulations

topological closure

- $W \subset A$: conditioning agents (variables)
- $H \subset \mathbb{H}:$ localization

Definition

For a given agent $a \in A$, the conditional parents set $\mathcal{P}^{W, H} a$ is the smallest subset $B \subset A$ such that

$$
\mathcal{J}_{a} \cap H \subset\left(\bigotimes_{b \in B \cup W} U_{b}\right) \otimes \mathcal{F}_{a} \cap H
$$

We denote by \bar{B} (or $\bar{B}^{W, H}$) the topological closure of B, which is the smallest subset of A that contains B and its own parents under $\mathcal{P}^{w, H}$

Modeling interventions

Atomic intervention

$$
\mathcal{J}_{X} \leftarrow\left(\mathcal{J}_{X} \otimes\{I=0\}\right) \cup(\{\emptyset, \mathbb{H}\} \otimes\{I=1\})
$$

Atomic intervention

$$
\mathcal{J}_{X} \leftarrow \underbrace{\left(\mathcal{J}_{X} \otimes\{I=0\}\right)}_{\text {normal regime }} \cup \underbrace{(\{\emptyset, \mathbb{H}\} \otimes\{I=1\})}_{\text {intervention }}
$$

> Intervention not activated, $I=0$

Application²

Can we estimate $\operatorname{Pr}(Y \mid$ do $(X))$ from the observational distribution?

[^1]
Application ${ }^{3}$ (hand waving style)

We picture the original graph, with the additional node

[^2]

> | we start with the situa- |
| :--- |
| tion $I=1$ |

By independence, we can set $W=1$

We now set $I=0$

Hence $P(Y \mid \operatorname{do}(X))=P(Y \mid X, W=1)$

Topological separation

Topological separation

Definition (Topological Separation)
We say that B and $C \subset A$ are (conditionally) topologically separated (w.r.t. (W,H)), and write

$$
\left.B \frac{\|}{t} C \right\rvert\,(W, H),
$$

if there exists $W_{B}, W_{C} \subset W$ such that

$$
W_{B} \sqcup W_{C}=W \text { and } \overline{B \cup W_{B}} \cap \overline{C \cup W_{C}}=\emptyset
$$

Main result

Theorem

$$
\left.Y \underset{t}{\frac{1}{t}} Z \right\rvert\,(W, H) \Longrightarrow \operatorname{Pr}\left(U_{Y} \mid U_{W}, U_{\bar{Z}}, H\right)=\operatorname{Pr}\left(U_{Y} \mid U_{W}, H\right)
$$

Illustration

Example 1

Are Y_{1} and Y_{2} independent when conditioned on W ?

Figure 1: The split of W is a piece of information that can be useful

Example 2

Figure 2: Are the Y 's independent when conditioning on the X 's ?

Example 2

Figure 3: Let $W_{X_{i}}=Y_{i}$, for $i=1$, 2. The closure of $X_{1} \cup Y_{1}$ (resp. $X_{2} \cup Y_{2}$), with the edges followed to build the closure, is in red (resp. blue).

Non-atomic interventions for free

Type	Strategy	$P\left(x \mid p a_{x}, u_{x} ; \sigma_{X}\right)$	
Idle	\emptyset	(unaltered)	
Atomic/do	$d o\left(X=x^{\prime}\right)$	$\delta\left(x, x^{\prime}\right)$	(4)
Conditional	$d o\left(X=g\left(p a_{x}^{*}\right)\right)$	$\delta\left(x, g\left(a_{x}^{*}\right)\right)$	(5)
Stochastic/Random	$P^{*}\left(X \mid p a_{x}^{*}\right)$	$P^{*}\left(x \mid p a_{x}^{*}\right)$	(6)

Figure 4: From [Correa2020]

Topological separation

 extends d-separation to more general settings
Topological separation and d-separation

Theorem
Let $(\mathcal{V}, \mathcal{E})$ be a graph, that is, \mathcal{V} is a set and $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$, and let $W \subset \mathcal{V}$ be a subset of vertices, we have the equivalence

$$
b \frac{\|}{t} c\left|W \Longleftrightarrow b \frac{\|_{d}}{} c\right| W \quad\left(\forall b, c \in W^{c}\right)
$$

Proofing toolbox: binary relations

Binary relation

We define

- Conditional parentality relation
- Conditional ancestry relation
- Conditional common cause relation
- Conditional "cousinhood relation"
- t-separation relation

An illustration of equational reasoning

Proof We have that

$$
\begin{aligned}
& \Delta_{W^{c}}\left(\Delta \cup\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\right) \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *}\left(\Delta \cup \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right)\right) \Delta_{W^{c}} \\
& =\Delta_{W^{c}} \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *} \Delta_{W^{c}} \\
& \text { (by developing) } \\
& \cup \Delta_{W^{c}} \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *}\left(\mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right)\right) \Delta_{W^{c}} \\
& \cup \Delta_{W^{c}}\left(\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\right) \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *} \Delta_{W^{c}} \\
& \cup \Delta_{W^{c}}\left(\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\right) \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *}\left(\mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right)\right) \Delta_{W^{c}} \\
& =\Delta_{W^{c}} \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *} \Delta_{W^{c}} \\
& \cup \Delta_{W^{c}} \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{\mathrm{c}}} \quad\left(\text { as } \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W}=\mathcal{C}^{W} \text { by }(34 \mathrm{c})\right) \\
& \cup \Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *} \Delta_{W^{c}} \quad \text { (also by (34c)) } \\
& \cup \Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}} \quad \text { (also by (34c) applied twice) } \\
& =\Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}} \quad \text { (by (34d) and (34e)) } \\
& \cup \Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right)\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{\mathrm{c}}} \quad \text { (by (34e)) } \\
& \cup \Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{\mathrm{c}}} \quad \text { (by (34d)) } \\
& \cup \Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}} \\
& =\Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}} .
\end{aligned}
$$

This ends the proof.

An illustration of equational reasoning

Latex File Edit Options Buffers Tools Coq Proof-General Yasnippet Holes Outline Hide/Show Help


```
    move }=>\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}\mathrm{ .
    by split }=>\mathrm{ [[z [H1 /Singl_iff &]]| H1];[|ヨ x';split;[|apply In_singleton]].
Qed.
(* Closure intersect as a relation *)
Definition Closure_intersect :=
    \lambda(x y:A) = Clos_(x | E,W) \capClos_(y | E,W) \not=' }\varnothing
Lemma Clos_Intersect : \forall (x y:A),
        Clos_(x | E,W) \cap Clos_(y | E,W) # '\varnothing 
        (let R:= Emw.* * Ew.* in R x y).
Proof.
    move = w w1' w}\mp@subsup{\mathbf{N}}{}{\prime}; split
    _ rewrite -notempty_exists.
        move }=>[_[z [\mp@subsup{w}{1}{}[\mp@subsup{H}{1}{}/\mathrm{ Singl_iff }\leftarrow]][\mp@subsup{w}{2}{}[\mp@subsup{H}{2}{}/\mathrm{ Singl_iff }\leftarrow]]]]
        by (\exists z; split;[rewrite Emw_1 |]).
        _ rewrite -notempty_exists.
        move }=>[z[\mp@subsup{H}{1}{}\mp@subsup{H}{2}{}]]; rewrite Emw_1 in H1.
        by ョ z;split;rewrite !Clos_Ew.
Qed.
```

Conclusion

Summary

- Information Algebras: an alternative language to describe causal dependencies
- IDM: a generalization of causal graphs
- Topological separation, as an alternative definition of d-separation

Making the case for Algebraic Causality

- Unlock mathematical toolboxes
- Unifying, generalizing and versatile framework for causality
- Elegant style of expression and proof: equational reasoning
- compositionality
- binary relations
- Potential to bridge causality, game theory, control and reinforcement learning

Some References

H．S．Witsenhausen．
On information structures，feedback and causality．
SIAM J．Control，9（2）：149－160，May 1971.
目 S．Tikka，A．Hyttinen，and J．Karvanen．
Identifying causal effects via context－specific independence relations．
Proceedings of the AAAI Conference on Artificial Intelligence， 2019.

國 J．Correa，E．Bareinboim
A Calculus for Stochastic Interventions：Causal Effect Identification and Surrogate Experiments．
In Advances in Neural Information Processing Systems，pages
2804－2814， 2019.
䍰 B．Heymann，M．De Lara，J．P．Chancelier．
Kuhn＇s equivalence theorem for games in product form，
In Games and Economic Behavior，Volume 135， 2022

[^0]: ${ }^{1}$ Structural Causal Models

[^1]: ${ }^{2}$ Example taken from Tikka et al. 2019

[^2]: ${ }^{3}$ We do it in the graphical world because it is possible to do so. Note however that Information Dependency Models can deal with more complex situations

