# Maximizing the Success Probability of Policy Allocations in Online Systems 

Artem Betleii, Mariia Vladimirova¹, Mehdi Sebbar², Nicolas Urien², Thibaud Rahier ${ }^{1}$, Benjamin Heymann ${ }^{1}$

${ }^{1}$ Criteo AI Lab

${ }^{2}$ Criteo Ad Landscape

## Motivation

- Application: bidding for display advertising auctions
- Task: allocate bidding policies to users
- Challenge with bid level design: requires attributing generated value to the right touchpoints; multiple touchpoints per timeline
$\rightarrow$ bid level algorithms are poorly suited for causal methods
- Challenge with policy allocation: cost-constrained expected value maximization raises intractable trade-offs and does not account for uncertainty
$\rightarrow$ Policy allocation methods are poorly suited for complex preferences over outcome distribution


## Contribution

- A user timeline level formulation, considering entire policies instead of individual bids
- A success probability maximization formulation, with a flexible and risk-sensitive criterion


Outcome vector
$\mathbf{Y}=\left(Y^{c}, Y^{v}\right)$ of the (cost, value) distributions. In blue for the solution of Expected Value Maximization (1) and in orange the solution of Success Probability Maximization (2).

## Problem Formulation

- $\Pi=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{K-1}\right\}$ a set of $K$ candidate policies, each being bidding strategy applied to users,
- $\mathbf{X} \in \mathcal{X} \subset \mathbb{R}^{d}$ contains features of user $u$ captured at time $t_{0}$,
- $\mathbf{Y}=\left(Y^{v}, Y^{c}\right) \in \mathcal{Y} \subset \mathbb{R}_{+}^{2}$ are the value generated by $u$ of period $\tau$ and the cost spent to advertize to $u$ respectively,
- $\{\mathbf{Y}(\pi)\}_{\pi \in \Pi}$ are realizations of the potential outcomes variables - $\mathbf{y}_{u}=\mathbf{y}_{u}\left(\pi_{u}\right)$ is observed factual outcome and $\left\{\mathbf{y}_{u}\left(\pi_{u}\right)\right\}_{\pi \in \Pi \backslash\left\{\pi_{u}\right\}}$ are unobserved counterfactual outcomes

In Expected Value Maximization we are looking for a solution $\psi^{*}: \mathcal{G} \rightarrow \Pi$ to the allocation problem:

$$
\begin{equation*}
\max _{\psi \in \Pi^{G}} \mathbb{E}\left[\sum_{u \in \mathcal{U}} Y_{u}^{v}\left(\psi\left(G_{u}\right)\right)\right] \text { s.t. } \mathbb{E}\left[\sum_{u \in \mathcal{U}} Y_{u}^{c}\left(\psi\left(G_{u}\right)\right)\right] \leq C \text {. } \tag{1}
\end{equation*}
$$

where $G_{u}=\gamma\left(\mathbf{X}_{u}\right)$ for all $u \in \mathcal{U}, \gamma: \mathcal{X} \rightarrow \mathcal{G}$ is partition function and $\mathcal{G}=\{1, \ldots, M\}$ contains partitions indexes.

Instead, Success Probability Maximization problem is:

$$
\begin{equation*}
\max _{\psi \in \Delta^{\mathcal{G}}} \mathbb{P}\left(\sum_{u \in \mathcal{U}} \mathbf{Y}_{u}(\psi) \in \mathcal{S}\right)=\max _{\psi \in \Delta^{\mathcal{G}}} \mathbb{E}\left[\mathbb{I}_{\mathcal{S}}\left(\sum_{u \in \mathcal{U}} \mathbf{Y}_{u}(\psi)\right)\right] \tag{2}
\end{equation*}
$$

Example of $\mathcal{S}$ : $\mathcal{S}_{\mathbf{y}_{0}}=\left\{\left(y^{v}, y^{c}\right) \in \mathcal{Y}\right.$ s.t. $y^{v}>y_{0}^{v}$ and $\left.y^{c} \leq y_{0}^{c}\right\}$.

## Algorithm

Let $\mathcal{C}(\psi)=\mathbb{E}\left[\mathbb{I}_{\mathcal{S}}\left(\sum_{u \in \mathcal{U}} \mathbf{Y}_{u}(\psi)\right)\right]$ be the optimization criterion. We use a Gaussian approximation: $\mathbf{Y}(\psi) \sim \mathcal{N}(\boldsymbol{\mu}(\psi), \boldsymbol{\Sigma}(\psi))$. With $\boldsymbol{\mu}(\psi), \boldsymbol{\Sigma}(\psi)$ mean and covariance of the bivariate Gaussian.

Lemma: The gradient of $\mathcal{C}$ at $\psi$ satisfies

$$
[\nabla \mathcal{C}(\psi)]_{g, k}=\mathbb{E}\left[\mathbb { I } _ { \mathcal { S } } ( \mathbf { Y } ) \left((\mathbf{Y}-\boldsymbol{\mu}(\psi))^{\top} \boldsymbol{\Sigma}(\psi)^{-1} \cdot \boldsymbol{\mu}_{g, k}\right.\right.
$$

$$
\left.\left.-\frac{1}{2}\left(\boldsymbol{\Sigma}(\psi)-(\mathbf{Y}-\boldsymbol{\mu}(\psi))(\mathbf{Y}-\boldsymbol{\mu}(\psi))^{\top}\right) \cdot \boldsymbol{\Sigma}(\psi)^{-1} \boldsymbol{\Sigma}_{g, k} \boldsymbol{\Sigma}(\psi)^{-1}\right)\right]
$$

Input: $\mathcal{S},\left\{\hat{\boldsymbol{\mu}}_{g, k}\right\},\left\{\hat{\boldsymbol{\Sigma}}_{g, k}\right\}, \psi_{0}, n_{\text {st }}>0, \eta>0$
$\psi \leftarrow \psi_{0}$
for $t=0$ to $n_{\text {st }}$ do
$\hat{\boldsymbol{\mu}} \leftarrow \sum_{k, g} \psi(g, k) \hat{\boldsymbol{\mu}}_{g, k}, \hat{\boldsymbol{\Sigma}} \leftarrow \sum_{k, g} \psi(g, k) \hat{\boldsymbol{\Sigma}}_{g, k}$
$\nabla \leftarrow \hat{\nabla} \mathcal{C}(\psi)$
$\psi \leftarrow \psi+\eta \nabla$
Project $\psi$ onto $\Delta^{M}$
end
Return $\psi$
Algorithm: SuccessProbaMax
Experiments
$\mathbf{Y}=\left(Y^{v}, Y^{c}\right)$ is a 2D outcome. Problem is parameterized by 2 D difficulty level $\mathbf{r}=\left(r_{v}, r_{c}\right)$ s.t. $\mathcal{S}=\left\{\left(r_{v},+\infty\right),\left(-\infty, r_{c}\right]\right\}$.

## Synthetic data

| Example | $\left[\mu_{g, k}^{v}\right]$ | $\left[\Sigma_{g, k}^{v}\right]$ | $\left[\mu_{g, k}^{c}\right]$ | $\left[\Sigma_{g, k}^{c}\right]$ | $\rho$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu_{2}^{c}$ and $\Sigma_{1}^{c}$ larger | $[2,1]$ | $[9,1]$ | $[1,1.5]$ | $[4,1]$ | 0.5 |
| $\mu_{2}^{c}$ and $\Sigma_{1}^{c}$ smaller | $[2,1]$ | $[9,1]$ | $[1,0.5]$ | $[1,1]$ | 0.5 |

Bivariate Gaussian distribution parameters for generation with one bucket ( $M=1$ ), two policies ( $K=2$ ) and 2D outcome $\mathbf{Y}$.


Result for different $r_{c}$ with fixed $r_{v}=0$ on synthetic setup with two-dimensional outcome for cases (i) (left) and (ii) (right).

## Real data: Criteo dataset



