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Motivation

Application: bidding for display advertising auctions

Task: allocate bidding policies to users

Challenge with bid level design: requires attributing

generated value to the right touchpoints; multiple

touchpoints per timeline

→ bid level algorithms are poorly suited for causal methods

Challenge with policy allocation: cost-constrained expected

value maximization raises intractable trade-offs and does

not account for uncertainty

→ Policy allocation methods are poorly suited for complex

preferences over outcome distribution

Contribution

A user timeline level formulation, considering entire

policies instead of individual bids

A success probability maximization formulation, with a

flexible and risk-sensitive criterion
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Problem Formulation

Π = {π0, π1, . . . , πK−1} a set of K candidate policies, each

being bidding strategy applied to users,

X ∈ X ⊂ Rd contains features of user u captured at time t0,

Y = (Y v, Y c) ∈ Y ⊂ R2
+ are the value generated by u of

period τ and the cost spent to advertize to u respectively,

{Y(π)}π∈Π are realizations of the potential outcomes

variables - yu = yu(πu) is observed factual outcome and

{yu(πu)}π∈Π\{πu} are unobserved counterfactual outcomes

In Expected Value Maximizationwe are looking for a solution

ψ∗ : G → Π to the allocation problem:

max
ψ∈ΠG

E

[∑
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Y v
u (ψ(Gu))

]
s.t. E

[∑
u∈U
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u (ψ(Gu))

]
≤ C. (1)

where Gu = γ(Xu) for all u ∈ U , γ : X → G is partition

function and G = {1, . . . ,M} contains partitions indexes.

Instead, Success Probability Maximization problem is:

max
ψ∈∆G

P
(∑
u∈U

Yu(ψ) ∈ S
)

= max
ψ∈∆G

E

[
IS
(∑
u∈U

Yu(ψ)
)]

, (2)

Example of S : Sy0 = {(yv, yc) ∈ Y s.t. yv > yv0 and y
c ≤ yc0}.

Algorithm

Let C(ψ) = E
[
IS

(∑
u∈U Yu(ψ)

)]
be the optimization criterion.

We use a Gaussian approximation: Y(ψ) ∼ N (µ(ψ),Σ(ψ)).
With µ(ψ),Σ(ψ) mean and covariance of the bivariate Gaus-

sian.

Lemma: The gradient of C at ψ satisfies

[∇C(ψ)]g,k = E
[
IS(Y)

(
(Y − µ(ψ))TΣ(ψ)−1 · µg,k

− 1
2
(
Σ(ψ)− (Y− µ(ψ))(Y− µ(ψ))T

)
·Σ(ψ)−1Σg,kΣ(ψ)−1

)]
Input: S , {µ̂g,k}, {Σ̂g,k}, ψ0, nst > 0, η > 0
ψ ← ψ0
for t = 0 to nst do

µ̂←
∑

k,g ψ(g, k)µ̂g,k, Σ̂←
∑

k,g ψ(g, k)Σ̂g,k

∇ ← ∇̂C(ψ)
ψ ← ψ + η∇
Project ψ onto ∆M

end

Return ψ

Algorithm: SuccessProbaMax

Experiments

Y = (Y v, Y c) is a 2D outcome. Problem is parameterized by

2D difficulty level r = (rv, rc) s.t. S = {(rv,+∞), (−∞, rc]}.

Synthetic data

Example [µvg,k] [Σv
g,k] [µcg,k] [Σc

g,k] ρ

µc2 and Σc
1 larger [2, 1] [9, 1] [1, 1.5] [4, 1] 0.5

µc2 and Σc
1 smaller [2, 1] [9, 1] [1, 0.5] [1, 1] 0.5

Bivariate Gaussian distribution parameters for generation with one

bucket (M = 1), two policies (K = 2) and 2D outcome Y.

Result for different rc with fixed rv = 0 on synthetic setup with

two-dimensional outcome for cases (i) (left) and (ii) (right).

Real data: Criteo dataset

Results for different Gain rv while rc = 0 on real data with

two-dimensional outcome for train (left) and test (right) splits.


