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Motivation

= Application: bidding for display advertising auctions
= Task: allocate bidding policies to users

= Challenge with bid level design: requires attributing
ocenerated value to the right touchpoints; multiple
touchpoints per timeline

— bid level algorithms are poorly suited for causal methods

= Challenge with policy allocation: cost-constrained expected
value maximization raises intractable trade-offs and does
not account for uncertainty

— Policy allocation methods are poorly suited for complex
preferences over outcome distribution

Contribution

= A user timeline level formulation, considering entire
policies instead of individual bids

= A success probability maximization formulation, with a
flexible and risk-sensitive criterion
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Problem Formulation

= [I ={my,m,...,mx_1} a set of K candidate policies, each
being bidding strategy applied to users,

» X € X C R? contains features of user u captured at time ¢,

Y = (Y, Y% € Y C R? are the value generated by u of
period 7 and the cost spent to advertize to u respectively,

* {Y(7) }ren are realizations of the potential outcomes
variables - y, = yu.(m,) is observed factual outcome and
1Yulmu) }rem g1 @re unobserved counterfactual outcomes

In Expected Value Maximization we are looking for a solution
Y* G — 11 to the allocation problem:

max B |Y VI/(0(G,)| stE|Y Yi(G,))| <C. (1)
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where G, = v(X,) forallu € U, v : X — G is partition
function and G = {1,..., M} contains partitions indexes.

Instead, Success Probability Maximization problem is:
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Algorithm

Let C(¢) = E |Is (>, Yu(¥)) ] be the optimization criterion.
We use a Gaussian approximation: Y (¢) ~ N (u(v), X(v)).
With (), 3(v») mean and covariance of the bivariate Gaus-
sian.

Lemma: The gradient of C at ¢ satishes
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Experiments

Y = (YY", Y9 s a 2D outcome. Problem is parameterized by
2D difficulty level r = (ry, 7.) s.t. S = {(ry, +00), (—o0, 1] }.

Synthetic data
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Bivariate Gaussian distribution parameters for generation with one
bucket (M = 1), two policies (K = 2) and 2D outcome Y.
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Result for different r. with fixed r, = 0 on synthetic setup with
two-dimensional outcome for cases (i) (left) and (ii) (right).

Real data: Criteo dataset
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Results for different Gain r, while r. = 0 on real data with
two-dimensional outcome for train (left) and test (right) splits.



