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Abstract We propose a novel method for the microgrid energy management problem
by introducing a nonlinear, continuous-time, rolling horizon formulation. The method
is linearization-free and gives a global optimal solution with closed loop controls. It
allows for the modelling of switches. We formulate the energy management problem
as a deterministic optimal control problem (OCP). We solve (OCP) with two classical
approaches: the direct method and Bellman’s Dynamic Programming Principle (DPP).
In both cases we use the optimal control toolbox Bocop for the numerical simulations.
For the DPP approach we implement a semi-Lagrangian scheme adapted to handle
the optimization of switching times for the on/off modes of the diesel generator. The
DPP approach allows for accurate modelling and is computationally cheap. It finds the
global optimum in less than one second, a CPU time similar to the time needed with
a Mixed Integer Linear Programming approach used in previous works. We achieve
this result by introducing a ‘trick’ based on the Pontryagin Maximum Principle. The
trick reduces the computation time by several orders and improves the precision of
the solution. For validation purposes, we performed simulations on datasets from an
actual isolated microgrid located in northern Chile. The result shows that the DPP
method is very well suited for this type of problem.
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1 Introduction

Distributed Energy Resources (DER) play a key role as an energy supply alternative.
Moreover, DER are in most of the cases renewable energy sources and bring positive
environmental impacts and contribute to sustainability. In order to integrate in a mas-
sive way DER into interconnected power systems or make use of DER as a power
source for isolated locations, microgrids appear as a suitable technical solution.

A microgrid is a group of interconnected loads and DER that acts as a single
controllable entity. It can operate connected to the main network or autonomously
(isolated) [1]. In either case, an Energy Management System (EMS) is required to
coordinate the different units that compose it. TheEMSsolves an optimization problem
and, as described in [2], this problem falls into the category of Mixed Integer Linear
Programming (MILP).

Depending on the philosophy established for the EMS and the different compo-
nents (generation units, loads, storage devices) incorporated into the microgrid, the
objective function may be nonlinear. Moreover, the operation of some of these com-
ponents involves start up / shut down set points that are typically represented as binary
functions of time in the problem formulation. Constraints represent in particular oper-
ational limitations of storage devices and generation units (i.e., batteries (dis)charging
patterns).

This problem is usually modeled by a MILP approach, for which the complexity
mostly stems from the modelling of nonlinearities: battery charging/discharging pat-
tern and the diesel engine efficiency [2] for instance. Heuristic techniques have been
also applied to the microgrid EMS problem, such as Genetic Algorithms (GA) [3,4],
Particle Swarm Optimization (PSO) [3], and Ant Colony Optimization (ACO) [5].

Finally, recent works which focus on microgrid energy management systems have
incorporated a more detailed modelling of the energy storage system. This energy
management system considers the importance of the cost associated with its replace-
ment, so that extending the life span of the battery is part of the objective. In this
context, GA have been implemented to solve the problem [6], and other predictive
control approaches such as the ones described in [7–10].

Other authors have made use of the Dynamic Programming Principle (DPP) to
solve the EMS problem. Kanchev et al. [11] use DPP but look for GHG emissions
reductions, [12] focus its objective on the Energy Storage System (ESS) management.
These cases do not consider the economic efficiency of the whole microgrid. In [13]
the EMS problem is focused on buildings decision incorporating uncertainty modeled
with Markov chains under a discrete approach. Babazadeh [14] makes use of DPP
to handle the wind power management in a microgrid environment. In [15] DPP has
been developed to solve out the maximum profit an owner might achieve from energy
trading in a day, either in isolated or connected mode, without taking into account
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the management of batteries. Finally, [16] applies a multi path dynamic programming
(MPDP) approach to solve a power scheduling considering load/generation changes
and time of use (TOU) tariff for a low voltage DC microgrid incorporating energy
storage battery, fuel cell and Photo Voltaic energy.

An important conceptual difference between previous works and the present study
is that we start with the optimal control problem formulated in continuous time. This
gives access to a broader set of theoretical and numerical tools (e.g. Pontryagin’s
Principle and the Direct Approach).

Themicrogrid model presented in this work handles some challenges involved with
the microgrid EMS, such as units modelling, ESS management, CPU solving time for
real applications and the switching of the generatormode (on or off) amongothers,with
a continuous time optimal control formulation. This approach keeps the original non-
linear model for the numerical optimization, which enhances the solutions accuracy.
The proposal considers two solution methods:

The direct method starts with a time discretization to transform the continuous
optimal control problem into a Nonlinear Programming (NLP) problem. The NLP is
then solved with any usual technique (see for instance [17]).

The DPP method [18] relies on Bellman’ s Principle and uses a discretization of
both time and space to compute the value function. This information then allows the
reconstruction of the optimal trajectory using feedback controls, see e.g. [19].

We perform numerical simulations for both methods using the optimal toolboxes
Bocop and BocopHJB [20,21]. The proposed methods are validated with data from
a real microgrid operating in Huatacondo, an isolated northern Chilean village that
relies completely on themicrogrid concept for its electricity supply, which is described
in Sect. 2. The present study uses a similar model to the one presented in [22], so that
the comparison is relevant. We show results for the three approaches: MILP, direct
method and DPP.

Note that this work focuses on the comparison of the three techniques, but does not
intend to deal with their implementation as building block of upper level algorithms,
such asModel Predictive Control (MPC). Likewise, the demand and load modelling is
out of the scope of this article. In addition, in all this work the microgrid is considered
in disconnected mode, but a similar approach in connected mode could be envisioned
(using a market price for instance).

The main contributions of this work are:

– the introduction of a continuous time non-linear framework for the microgrid
energy management problem,

– for the dynamic programming approach, the modelling of the generator switching,
– the combination of the PontryaginMaximumPrinciple and the Dynamic Program-
ing Principle to get a surprising improvement of the computing time

– a comparison of the continuous time non-linear framework (with two resolution
techniques, DPP and direct method) with the MILP formulation.

The paper is organized as follows. Section 2 describes the microgrid system and
the optimal control formulation for its energy management. Section 3 explains the
numerical methods we use to solve the optimal control problem. Section 4 presents
the numerical simulations with the direct and DPP methods. Section 5 comments
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the results of the simulations. The conclusion sums up the main results and presents
ongoing research.

2 Model presentation

2.1 General aspects

2.1.1 Description of the microgrid

The followingmodel is based on a real microgrid operating in Huatacondo, an isolated
village in northern Chile that relies entirely on the microgrid concept for its electricity
supply. The microgrid we are considering includes a photovoltaic power plant (PV),
a diesel generator and a battery energy storage system (BESS). It uses a mix of fuel
and renewable energy sources. The solar panel and the wind turbine produce elec-
tricity without any additional cost, but the generation pattern cannot be controlled
and depends on the daily weather. The BESS can store energy for later use, but has
limited capacity and power. The diesel generator has a minimal and a maximal output
levels, and has a fixed start-up cost. All these are local generation units, i.e. situated
physically near the electric consumption point, and electric losses due to distribution
are not considered.

The aim is to find the optimal planning that meets the power demand andminimizes
the operational costs, which, in this case, mainly relates to the diesel consumption.
We follow the problem description from [22].

2.1.2 Optimal control formulation

We consider a fixed horizon T = 48 h. This is practice among electrical engineers,
due to the fact that the meteorological forecast is reliable over this horizon. It also
eases comparisons with [22].

For t ∈ [0, T ], we denote by PS(t) the solar power from the photovoltaic panels,
PD(t) the diesel generator power and PL(t) the electricity load. The state of charge
SOC(t) of the BESS evolves according to the dynamics

˙SOC(t) = 1

QB
(PI (t)ρI − PO(t)/ρO), (1)

where QB is themaximum capacity of the battery, PI , PO > 0 are the input and output
power of the BESS, and ρI , ρo are the efficiency ratios for the charge and discharge
processes, assumed constant. Observe that (1) writes equivalently

˙SOC(t) = 1

Q̃B
(PI (t)ρ̃ − PO(t)), (2)

where Q̃B = ρOQB and ρ̃ = ρIρO .
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Table 1 Model parameters,
CLP means Chilean Pesos

Name Notation Value Unit

Min diesel power Pmin 5 kW

Max diesel power Pmax 120 kW

Unserved energy cost CUS 250 CLP/kWh

Diesel start-up cost – 1000 CLP

Diesel price CD 500 CLP

We introduce the slack variable Pslack that represents the excess power (Pslack < 0),
which has to be shed, or the missing power in the microgrid (Pslack > 0), which turns
into unmet demand. The addition of this variable ensures the mathematical feasibility
of the problem. Positive Pslack will be penalized byCUS P

+
slack , whereCUS is a positive

constant (see Table 1).
The underlying power equilibrium equation is

PD + PO + PS + Pslack − PL − PI = 0. (3)

Taking into account the demand and the various power production devices, we
obtain that PO and PI can be written as nonlinear functions of (t, PD, Pslack):

PO(t, PD, Pslack) = −min(0, PS(t) + PD − PL(t) + Pslack),

PI (t, PD, Pslack) = max(0, PS(t) + PD − PL(t) + Pslack). (4)

We model the fuel consumption of the diesel generator by the following strictly
concave function

∫ T

0
K PD(t)0.9dt, (5)

with K = 0.471. The fuel consumption curve was extrapolated from the datasheet
provided by the diesel generator manufacturer as in [22].

For physical reasons, the system is subject to the following constraints at every time
t ∈ [0, T ]:

SOC(t) ∈ [0.2, 1], (6)

PD(t) ∈ {0} ∪ [5, 120], (7){
PI (t, PD(t), Pslack) ∈ [0, 13.2] if SOC(t) < 0.9,
PI (t, PD(t), Pslack) ≤ 13.2(1 − SOC(t))2 otherwise,

(8)

PO(t) ∈ [0, 40]. (9)

Note that (4) implies that (8) and (9) are constraints on PD . The state constraint (6)
expresses the maximum and minimum charge of the battery. Constraints (7)–(9) are
control constraints. The minimal andmaximal power for the diesel generator are given
by (7). The charging and discharging limits for the battery are stated in (8) and (9). The
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Fig. 1 Battery charge constraint

charging limit depends on the state of charge, and is therefore a mixed control-state
constraint, as illustrated on Fig. 1.

Since the operations time frame is larger than the optimization horizon, we impose
a constraint on the final time to avoid the battery depletion. We impose this con-
straint either with a periodicity condition SOC(0) = SOC(T ) (direct method) or a
penalization term g(SOC(T )) (DPP method).

In summary the optimal control problem can bewritten under the following abstract
formulation (see [23, Chapter 2])

(OCP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
u

∫ T

0
�(u(t))dt + g(x(T ))

ẋ(t) = F(u(t), t)

x(0) = x0
u(t) ∈ Ux(t)

x(t) ∈ C.

(10)

In the notation above, x , u, F ,Ux and C correspond respectively to the state variable
(SOC), the control variable (PD and Pslack), the dynamics of the system (1) and (4),
the control constraints on u(t) (see (7)–(9)), and the state constraints (6). The time
horizon T is 48 h. The objective function is the sum of a final cost g (introduced in
Sect. 2.3 to impose a periodicity condition) and the integral of � defined in (5). These
functions are defined resp. over the state and control space.

2.2 Switching cost

Turning the diesel generator on consumes fuel. We model this by considering that
the diesel generator has two modes: when off, the only admissible control is PD = 0,
whereas when it is on, PD ∈ [Pmin, Pmax]. At any time, one can switch from one mode
to the other by paying the corresponding switching cost. This cost is zero to turn the
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generator off, and is equal to CD to turn the generator on. It should be stressed that
while the modelling of the switching cost is straightforward in the DPP setting, it is
challenging for the Direct Method approach.

2.3 Periodicity condition

To avoid the battery depletion at the end of the time horizon, we add a periodicity
constraint on the state

SOC(0) = SOC(T ). (11)

The implementation of the constraint is straightforward for the MILP model and the
Direct Method. The actual initial value is then optimized by the algorithm.

For the dynamic programming approach we model the periodicity condition by
taking a similar approach to the “big M method” in linear programming:

g(SOC(T )) = M if SOC(T ) < SOC0,

g(SOC(T )) = 0 if SOC(T ) ≥ SOC0.

For the simulations, we set SOC0 = 0.7.

3 Presentation of the numerical methods

We give here a brief presentation of the two resolution approaches we are considering
and explain how to apply them in order to solve (10). The reader will find more on
these approaches in [17,19].

3.1 The direct method approach

3.1.1 Presentation

The Direct Method consists in applying a nonlinear programming interior-point algo-
rithm to a time discretization of the optimal control problem. The decision variables
of this discretized problem are the values of the control variables at each time step.
Since we solve the discretized problem by locally convergent algorithms, we cannot
guarantee that the numerical solution (if any) is close to a global optimum. On the
other hand, this approach often provides efficient solutions for large scale optimal
control problems, with limited computing times. Here is a summary of the Euler type
time discretization:
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t ∈ [0, T ] → {t0 = 0, . . . , tN = T }
x(·), u(·) → Z = {x0, . . . , xN , u0, . . . , uN−1}
Criterion → min h

∑N−1
i=0 �(ui ) + G(xN )

Dynamics → xi+i = xi + h f (xi , ui ) i = 0, . . . , N
Controls → ui ∈ Uxi i = 0, . . . , N − 1
States → xi ∈ C i = 0, . . . , N

We therefore obtain a nonlinear programming problem of the form

(NLP)

{
minZ F(Z)

LB ≤ C(Z) ≤ UB.

The optimal control toolbox Bocop solves the discretized nonlinear optimization
problem with the Ipopt solver [24] that implements a primal-dual interior point algo-
rithm.

3.1.2 Modelling remarks

We come back to our setting. This method allows a periodicity constraint of the form
SOC(0) = SOC(T ) where the actual value is optimized by the algorithm. On the
other hand, the constraint (7) is changed into PD ∈ [0, 120] because switching costs
are not easily modelled within this framework.

3.2 Dynamic programming approach

We propose a semi-Lagrangian scheme to solve the DPP, in particular because it is
adapted for problemswith switchingmodes.We refer the reader to themonograph [19]
and the references therein for an introduction to semi-Lagrangian schemes applied to
optimal control problems. In addition, the Pontryagin Maximum Principle (PMP), see
[25], provides additional information on the optimal solution. The combination of the
Dynamic Programming Principle and the Pontryagin Maximum Principle reduces the
computing time of the method significantly.

3.2.1 Brief presentation of the theory

LetV (t, x0) denote the value of the variant of problem (10)with initial time t and initial
state x0. In Bellman’s words [18] “An optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.” Inmathematical terms,
V satisfies for h ∈ (0, T − t):

V (t, x0) = inf

{∫ t+h

t
�(us)ds + V (t + h, x(t + h))

}
, (12)
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the infimum being taken over the set of admissible controls. In our case, we will use
an extended version of the DPP approach that handles the switchings, see [19] for
details.

3.2.2 Semi-Lagrangian scheme

The semi-Lagrangian scheme consists in solving a discretized version of (12) over the
space backward in time (see [19] for an overview). We have chosen this scheme to
solve the problem because it has good stability properties, it allows large time steps
and it is easy to implement. Let us motivate the scheme by first discretizing in time
(12). Given a time step h and N such that Nh = T , let us set tk = kh (k = 0, . . . , N ).
Denoting by V k the “approximated” value function at tk we have

V k(x) = min
u∈Ux

{h�(u) + V k+1(x + hF(u, tk))}. (13)

We derive the semi-Lagrangian scheme from (13) by discretizing in space the state
variable x and introducing interpolation operators in order to approximate V k+1(x +
hF(u, tk)) in terms of its values in the space grid. The scheme is solved backward in
time and, under standard conditions, it converges to the solution V of (12). We use
the implementation of BocopHJB (see [20,21]) for numerical experiments.

3.2.3 The PMP trick

Our problem has a property that greatly reduces the computing time. For the sake of
simplicity we do not detail the aspects related to the state constraints. If ū is the optimal
control, denote by x̄ the optimal state and by p̄ the costate associated to the dynamics
constraint ẋ(t) = F(t, u(t)). Defining theHamiltonian H(u, p, t) := pF(u, t)+�(u)

the PMP says that for all t ∈ [0, T ] we have

H(ū(t), p̄(t), t) ≤ H(v, p̄(t), t) for all v ∈ Ux̄(t).

Since the dynamics is continuous and piecewise affine, the Hamiltonian is the sum
of a continuous, piecewise affine and of a continuous strictly concave function, and
therefore is continuous and piecewise strictly concave. Thus, it attains its minimum
only at one of the extreme points of the pieces. Taking into account the constraints,
we have at most five possible optimal controls, as illustrated in Fig. 2. Moreover, the
values of these controls can be computed explicitly, since they do not depend on p̄.
Therefore, when doing the minimization in (13), we test only these controls instead
of discretizing the control space, gaining both in speed and precision. So:

– if the Diesel is off (mode 0), we simply take PD = 0.
– if the Diesel is on (mode 1), we test the five cases

• PD = 5 (minimum power),
• PD = 120 (maximum power),
• PD such that ˙SOC = 0 (battery unused),
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Fig. 2 The PMP trick illustrated

• PD such that Pi = Pmax
i (SOC) (maximal charge),

• PD such that P0 = 40 (maximal discharge).

The specific structure of the problem permits to reduce the computing time. More
precisely, the candidates for the optimal control do not depend on the costate p̄ and
therefore can be evaluated and tested when computing the value function. In the
general case, the control that minimizes the Hamiltonian is expressed as a function
of he state and costate, the latter being unavailable in the DPP approach (the costate
actually corresponds to the gradient of the Value Function under suitable regularity
assumptions).

Remark 1 (Slack variable) In the five cases mentioned above, we adjust the slack
variable if needed to get an admissible Diesel output PD .

We now propose a pseudo-algorithm for the numerical resolution:
Data: h, ISOC

Result: V k , kh = 0 . . . T
for kh ∈ T . . . 0 do

for m ∈ {ON,OFF} do
for SOC ∈ ISOC do

V k
m(SOC) = min{

minPD∈G(SOC,m,kh) h�(PD) + V k+1(x + hF(PD, kh)),

minPD∈G(SOC,m̄,kh) h�(PD) + V k+1(x + hF(PD, kh)) + Cswi tch(m)}
end

end
end
The parameter h corresponds to the time discretization size, and ISOC is the state

discretization grid. The result is the value function V k for each time step k. The func-
tions F and � correspond to the dynamics and running cost as expressed in the abstract
optimal control problem formulation (10). The mode m ∈ {ON,OFF} corresponds to
the fact that the diesel can be already working or turned off. We have denoted by m̄
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the negation of m. In case of switch, a cost Cswi tch(m) has to be added to the cost to
go function. This cost is the startup cost if the generator is turned on (see Table 1),
and 0 otherwise. The set G(SOC,m, t) corresponds to the potential optimal controls
deduced from the PMP trick.

4 Numerical simulations

4.1 Comments on the inputs: solar power and power load

We test the algorithms with a 15′ time step that gives a good compromise between
accuracy and numerical complexity, and allows comparisons with the MILP approach
in [22].We use two historical data sets. Both correspond to representative 48-h periods,
One data set was obtained with winter data, the other one with summer data. Figures 3
and 4 show the load power and the solar power for the 2 days of each period.

Since the actual microgrid is situated in the Atacama desert, we assume the pro-
duction from the photovoltaic panels to be reliably predictable. The demand, on the
other hand, has a greater variability. While it is modeled as deterministic in this initial
work, the extension of this model to a stochastic demand setting is the focus of [26].

4.2 Optimal solutions for the different methods

In addition to the direct and DPP methods, we present the results obtained with the
MILP approach from [22] as baseline for comparison. The six solutions are illustrated
in Figs. 5 and 6 for the DPP approach, in Figs. 7 and 8 for the direct approach and in
Figs. 9 and 10 for MILP method. The numerical results are summarized in Tables 2
and 3.
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Fig. 3 Summer data in kW
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Fig. 5 Summer DPP simulation

4.2.1 General observations

– The Solar Power fills the demand,with any excess power used to charge the battery.
– The Diesel is always off when solar power is available, and is switched on once
a day during the evening peak in demand. The Diesel output is often greater than
power demand: it is also used to charge the battery.
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Fig. 6 Winter DPP simulation
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– The battery fills the gaps between production and demand especially at night.
– MILP andDPP solutions are quite close, while the direct solution shows some clear
differences: different initial/final SOC, nominimal power, and spurious switchings.

4.2.2 Diesel range

Aqualitative difference between theMILP andDPP/direct approaches is, for the latter,
the existence of time intervals with a constant SOC, while the diesel exactly matches
the power load. In the MILP solutions the diesel is either off or saturating the charge
limit.

We notice that there is a tradeoff between low average production cost and low
storage cost per energy unit. On the one hand, since the diesel cost function is concave,
the diesel generator should run at maximal capacity to minimize the average unit price
of power produced. On the other hand one incurs on some losses when storing energy
because the battery is not perfectly efficient. One has to set the diesel output equal to the
net demand (so that nothing gets in or leaves the battery) tominimize those losses. This
tradeoff explains why on the DPP and Direct solutions we observe two kinds of non
zero diesel levels (low: just sufficient to satisfy the demand, and thus keep a constant
SOC , or high: maximum physical production level). The question is then why we do
not observe the low level on the MILP simulation. We do not have a straightforward
answer, as different phenomena could contribute to this observation. First the MILP
problem is a linearizedversionof theDPPproblem, so itmayhappen that this linearized
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Table 2 Results: MILP, direct and DP (summer case)

MILP DIRECT DP

Diesel range [18.7, 29.7] [6.5, 28.3] [9.8, 28.7]

Switchings 2 3 + spurious 2

Diesel cost (w/o switchings) 32,785 32,378 32,428

Cpu time (s) 3.92 3.41 0.52

SOC(0) = SOC(T) 0.72 0.57 0.70

SOC range [0.20, 0.89] [0.25, 0.89] [0.32, 0.88]

Slack range [0, 0] [0, 0] [0, 0]

Table 3 Results: MILP, direct and DP (winter case)

MILP DIRECT DP

Diesel range [11.7, 30.7] [4.4, 16.6] [9.2, 30.0]

Switchings 2 3 + spurious 2

Total cost 30,823 29,561 30,197

Cpu time (s) 3.28 3.92 0.55

SOC(0) = SOC(T) 0.73 0.65 0.70

SOC range [0.20, 0.96] [0.21, 0.92] [0.24, 0.95]

Slack range [0, 0] [−2.48, 0] [−2.51, 0]

version does not produce the same output. Second theMILP numerical solution is only
locally optimal and so it may differ from the MILP actual solution.

4.3 Comparison of the methods

We highlight below the differences between the three optimization methods.

Global optimum Both the MILP and direct approaches are local methods and may
converge to a local solution, depending on the provided starting point and the choice
of the stopping criterion (gap). On the other hand, the DPP approach performs a global
optimization over all possible (discretized) trajectories, and therefore always finds the
global optimum. This is an advantage for the user since one does not have to find a
“suitable” starting point. Also, the DPP solution provides a feedback optimal control,
whereas MILP and direct solutions are open-loop.

Switching cost Both MILP and DPP approaches take into account the switching costs
for the diesel generator. They typically find solutions with one switch per day, located
during the peak of power demand in the evening.On the other hand, the direct approach
has no cost for switchings, which explains why it may find solutions with many on-off
oscillations.
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Nonlinear model The MILP method requires a piecewise linear reformulation of the
nonlinear functions in the model, here for example the charging power limit or the cost
of diesel consumption. Both direct and DPPmethods use the original nonlinear model.
This simplifies the actual implementation, and may provide more accurate solutions.

Periodicity constraint and minimal diesel power Compared to MILP and DPP, the
direct method optimizes the value of the initial/final SOC. On the other hand, it does
not take into account the minimal power output for the diesel generator.

Computing time For this problem the computing time is a few seconds for MILP
and direct method, and less than one second for the DPP approach. Note that DPP is
outperforming the two other approaches thanks to the PMP trick and the fact that the
state is one dimensional. An interesting question is howwell each method would scale
for higher dimensions. MILP and direct approach are iterative methods, so changing
the problem size may lead to a different convergence, making it difficult to assess the
evolution of the CPU time. For the DPP approach, on the other hand, the number of
operations is always known and the CPU time can be predicted reliably. The CPU time
should increase linearly in the number of time steps. Due to the state discretization,
however, adding new state variables to the problem would have a significant impact
on performance (the so-called curse of dimensionality). In terms of high performance
computing, parallelization is possible withMILP and DPPmethods, not so easily with
the direct method.

5 Conclusion and perspectives

We applied two methods from the continuous optimal control field to the optimal
energymanagement of amicrogrid, namely the direct andDPP approaches. Numerical
simulations indicate that the DPP method is very well suited to this problem as it is a
linearization-freemethod that provides global optimal solutions in closed loop form. It
allows for themodelling of the switches and it is as fast as theMILP approach.Wewere
able to obtain the global optimum in less than one second of CPU time, while taking
into account the switching cost for the diesel generator. Solutions are close to the ones
obtained in [22] with a MILP formulation, the main difference being the existence
of time intervals where the battery stays at a constant SOC level. In comparison with
the two other approaches, the use of Pontryagins Maximum Principle combined with
Dynamic Programming reduces the computing time. The numerical experiments were
performed with the optimal control toolbox Bocop.

From a theoretical standpoint, the continuous model offers a very large collection
of mathematical results. The PMP trick introduced here is an example of insight one
can get from a continuous time mathematical analysis. (Observe that a Maximum
Principle exists for the discrete case, but only for a convex Hamiltonian).

Ongoing works on this topic include the extension to a stochastic model for the
power demand, see [26], and the study of the long-term aging of the battery, see the
related work in [27].
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