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a b s t r a c t

In display advertising auctions, a unique display opportunity may trigger many bid requests being sent
to the same buyer. Bid request duplication is an issue: programmatic bidding agents might bid against
themselves. In a simplified setting of unified second-price auctions, the optimal solution for the bidder
is to randomize the bid, which is quite unusual. Our results motivate the recent switch to a unified
first-price auction by showing that a unified second-price auction could have been detrimental to all
participants.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A large portion of the internet is financed by ad placements on
publishers’ websites. Those ad placements are sold either through
guaranteed contracts or through auction markets called Real-
Time Bidding (RTB) [13,20]. While guaranteed contracts decide in
advance the number of displays and the sale price, RTB markets
take place in real-time – as the name suggests – via programmatic
buying while the page is loading in the user’s browser.

The waterfall. Until recently [4], publishers mostly relied on the
waterfall logic [14], which we describe hereafter. First, the pub-
lisher (e.g., The NY Times) sets in advance a floor price for each
ad exchange. Then, when the user loads the page, the publisher’s
ad server calls the ad exchanges sequentially. The publisher might
rely on an intermediate piece of technology called the Supply Side
Platform (SSP, e.g., DoubleClick for Publishers, Rubicon Project for
Sellers and MoPub) for this purpose. The ad exchanges (e.g., Dou-
bleClick Ad Exchange and AppNexus) host internal auctions. The
Demand Side platforms (DSP, e.g., MediaMath and Criteo) receive
the bid requests from the ad exchanges they are connected to,
and bid in the name of their clients: the advertisers. Once the ad
exchanges have received the bids from the DSPs, they send the
clearing prices back to the publisher. The waterfall logic follows
a fixed priority order, and allocates the impression to the first ad
exchange that proposes a bid above its floor.

Header bidding. The waterfall logic has several drawbacks. In
particular, it increases the latency of the user experience, and the
allocation is not efficient (a low bid in a high ranked exchange
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might beat a high bid in a low ranked exchange). To tackle those
drawbacks, the waterfall logic has been progressively replaced by
Header Bidding, in which the ad exchanges themselves partici-
pate in a first-price auction. That is, the ad exchange with the
highest bid wins the auction and pays its bid.

When Header Bidding was introduced, the most common
setup was a two-step auction mixing first and second pricing
rules [15,18]: in the first step, several ad exchanges hosted a
second-price auction – the highest bidder wins the auction and
pays the second highest bid – and during the second step, they
used their clearing price as a bid in a final first-price auction.
This mechanism is not efficient [23]: the highest bidder may still
not get the item. This motivated a switch to a more efficient
and less obscure mechanism. The natural candidates would have
been a second-price auction both in the ad exchanges and in the
SSP, or a first-price auction both in the ad exchanges and in the
SSP. In this paper, we provide an argument against the use of a
unified second-price auction, which is described more precisely
in Section 3. This is an important argument, but we do not claim
that this is the only reason why the unified first-price auction –
in which only first-price auctions are hosted, and intermediate
winning bids are send to the next stage – was eventually cho-
sen. Despotakis et al. [7] provide another interesting perspective
centered on the publisher and the ad-exchanges.

Requests duplication. If several ad exchanges are connected to the
publisher, the DSPs receive duplicated bid requests, and hence
bid several times for the same impression. Besides, some DSPs
are directly connected to the publisher’s header bidding wrapper,
which might increase even more the multiplicity of the requests.

In a nutshell, when an internet user reaches a publisher page
containing some display inventory, it triggers a chain of calls that
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Fig. 1. A user reaching a page triggers a chain of calls that end up in the buyer’s
servers. At bidding time, the bidding agent might not know that other bidding
agents of the same buyer are bidding for the same opportunity. Hence, his bid
will be facing not only the aggregated competition, but also the bids of his fellow
bidding agents. Moreover, if the agent cannot tell apart Channel1 from Channel2 ,
then its bidding strategy is bound to be the same on those two channels.

ends up in the servers of the buying side: the advertiser’s Demand
Side Platform (DSP). The request is then handled by a program-
matic bidding agent that implements the buyer’s bidding strategy.
The request travels through intermediaries before getting to the
end buyer’s server. Due to the complexity of the chain of calls
and the multiplicity of intermediates (in particular, more than
one intermediate can be plugged to the publisher page), it may
happen that a buyer is called several times for the same display
opportunity (see Fig. 1): the bid requests are then said to be
duplicated.

Bid request duplication is a challenging issue for display ad-
vertising buyers [10,22]. We can picture the duplication prob-
lem this way: it is possible that several programmatic bidding
agents of the same buyer receive a bid request without knowing
whether the other agents have received a (duplicated) request
and whether they are going to bid. Indeed, the time scale involved
to answer the request is so short (less than 100 ms) that it can be
technically impossible (or at least very challenging) for the buyer
to synchronize the servers’ behaviors.

It is hard to assess the prevalence of duplication overall, since
it is specific to the advertiser/publisher integration. But it is safe
to assume that, at time of writing, it is more the rule than the
exception.

Effect of duplication on the Buyer’s Cost. This is a cause of sub-
optimal bidding for two reasons: (a) the bidder mistakenly inter-
prets a lost participation as a higher price to beat, while he may
be in fact the winner of the auction on another request, which
results in a bad estimation of the competitions, (b) by competing
against themselves, bidders may increase their costs.

In a second-price auction, it is clear that if we bid more than
once for the same opportunity, we end up paying our bid, as
in first-price. This paper focuses on this first-price effect, which
is specific to second-price auctions. Our goal is to characterize
the optimal solution in a simplified setting: a unique second-
price auction is resolved for the allocation of the display and the
channels are not taking any margins.

Why not a switch to unified second-price? We explain here why a
unified second-price auction may make the life of the buyer much
more complicated than expected. In the presence of duplications,
the unified second-price auction is too complex for the bidder to
be a good design choice.

In practice, there are many ad hoc business rules along the
resolution of the consolidated auction that may slightly contradict

with our setting. But we argue that, since the rules are evolving
quickly and are not always fully transparent, it is better to focus
on one aspect of real auctions and discuss the challenges this
aspect brings.

To the best of our knowledge, this is the first attempt to
discuss the issue of duplicated requests in the literature, despite
the fact that it has been a recurring topic in the industry, which
has for now mostly relied on Supply Path optimization (SPO)
heuristics. Actions that could be taken by a bidder at the channel
level mostly consists of (1) blacklisting the channel, (2) shade the
bid on this channel or (3) answer to only a fraction of the bid
requests (sampling) on this channel.

The optimal solution for the context we envision depends on
whether the bid requests for a given opportunity can be identified
by a unique feature such as the providing channel. As explained
in [10,22], this is not always the case in practice.

Contributions. The main contributions of this paper are: (1) the
modeling of the bid request duplication issue in unified second-
price auctions, (2) the resolution of the decentralized optimiza-
tion problem when the requests are all identical.

Agenda. After a brief introduction of the literature in the next
section, we expose the bidding with duplicates problem in Sec-
tion 4 and derive Lemma 1, a tool from which we will derive
the optimal bid formula. We then characterize in Section 5 the
solutions when the requests are all strictly identical. We follow
up with a discussion.

2. Bidding in display advertising auction markets

We refer the reader to [4,25] for general reviews on Real Time
Bidding.

Our work contributes to the literature of marketplace design,
but we mostly take the bidders perspective: the gap we attempt
to fill relates to the last step of bidders’ architecture. Hence, let us
briefly indicate some pointers to the design of bidders. Chapelle
et al. [3] provide a very precise description of an industrial ar-
chitecture. Yet, the bidder they describe (1) uses a last touch
attribution, (2) is operating in an incentive compatible world.

The question of attribution is a very active track of research.
For instance, some researchers propose the use of multi-touch
attribution [12,21,28] which aims at allocating conversion credits
to each display. In [8], Diemert et al. derive from an attribution
model a bid modifier that outperforms the benchmarks.

Besides, [3] does not take into account the business constraints
of the advertiser (which have an impact on the value of the
display opportunity). Another track of research relates to the
study of the impact of the advertiser’s business constraints on the
optimal bid and the market. Zang et al. derive an optimal solution
for the budget constrained bidding problem [29]. In [1], Balseiro
et al. study the impact of budget constraints on advertiser be-
havior by combining queuing theory and mean field approaches.
The notion of pacing algorithms [5,6] emerged from the need to
dynamically implement such business constraints. Heymann [11]
provides an analysis of the impact of CPA constraints in the buyer
optimization problem on the market outcomes.

In this work, we take for granted the fact that the bidder is
able to estimate the economical value of the display opportunity.
Hence, the questions of attribution and business constraints are
orthogonal to ours.

Another category of research questions is the derivation of
tools for transforming an economical value estimation into a bid.
Ren et al. [19] propose to frame the problems of utility and
competition estimation as well as the bid optimization into a
unique problem. Cai et al. [2] introduce a reinforcement learning
based approach to take into account the competition landscape
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evolution. Nedelec et al. introduce a technique for the buyer
to mitigate the loss of profit due to the seller’s reserve price
optimization strategy [16,17]. Their presentation uses functional
analysis tool, while Tang et al.’s is based on quantiles [24]. Our
work belongs to this category. We do not envision the use of
reserve prices for the sake of simplicity. We also assume that we
are able to estimate the competition.

Since our work studies a rule change on a marketplace, we
should mention those studies on soft floor auctions [27], water-
fall auctions [14], as well as this seminal work [9] on General-
ized second-price auctions for Search. While those are relevant
mostly from a general context perspective, [7] study the switch
to first-price auction of display advertising markets, but with the
perspectives of the ad exchanges and the publisher.

As already mentioned, we are not aware of any modeling
attempts of the duplicated request problem. Because this problem
can be seen as a decentralized control problem, this work owes
some inspirational credits to [26], who introduced a powerful
framework to model information in decentralized control.

3. The unified second-price auction

We assume the auction follows the following steps when an
item is auctioned:

1. The seller (the publisher) sends a bid request to the ad
exchanges

2. Each ad exchanges sends a bid request to its potential
buyers

3. The potential buyers answer the ad exchanges bid requests
4. Each ad exchanges i discover its highest bid xi and its

second highest yi
5. The xi are sent to the seller as bid
6. The seller host a second-price auction. The highest xi makes

ad exchanges i win the item. The channel is billed the
second highest x(2).

7. The highest bidder in ad exchanges i get the item, and is
billed by the ad exchanges max(x(2), yi)

With such a payment rule, this setting is equivalent to the one
drawn in Fig. 1 from the bidder perspective.

4. The duplicated requests bidding problem

In this section, we construct a static analysis of the situation
faced by the bidding agents in the presence of duplicated re-
quests. We derive in Lemma 1 a formula of the buyer’s expected
utility that will be used in the subsequent sections.

We take the viewpoint of a buyer who values the opportunity
v > 0 (hence, the distribution of v will not appear in the dis-
cussion). In the following, we assume everything is conditioned
on the features of the opportunity: the competition, the buyer’s
bidding strategy, the distribution of requests we might receive for
this opportunity at this point in time... In practice, the stochastic
patterns of the environment are learned by machine learning
algorithms that use the display opportunity features as input.

We focus on the case where the requests received at the
same time for the same display opportunity are all identical.
This can be caused by integration redundancy: an intermediary is
plugged twice to the same inventory. In practice, two requests for
the same opportunity may differ on channel related information
(source), but we trade-off simplicity against generality, and focus
on the closed form expression we derive.

The bidding strategy of the buyer is technically bound to be
the same on requests that are identical. As we will see thereafter,
the buyer needs to randomize its bid to reach optimality. We need
to look for a solution in the class of distributions on [0, v], which

is a super-set of both the shading strategies and the sampling
strategies. We denote by K : t ∈ [0, v] → [0, 1] the cumulative
distribution of the buyer’s bid b.

Let b− be the highest bid of the competition in the consol-
idated auction (the price to beat), G its cumulative distribution
and g its density distribution. We denote by bi the ith highest
bid of the buyer. The buyer wins the auction whenever b1 > b−.
In this case, by definition of the second-price auction, he will be
billed max

(
b−, b2

)
. The payoff of the buyer is its net utility

[b1 > b−
]
(
v − max

(
b−, b2

))
,

where for any Boolean variable X , [X] ∈ {0, 1} and [X] = 1
when X (it is sometimes called the characteristic function of X
and written 1X ).

The buyer’s expected payoff maximization problem is

max
K

E[b1 > b−
]
(
v − max

(
b−, b2

))
,

with b− being distributed according to the cumulative distribu-
tion G, independently of the other bid.

We have now all we need to introduce an intermediate result
that will be used in the subsequent sections.

Lemma 1 (Payoff). The expected payoff of a buyer receiving n
identical requests is∫ v

0
K (t)n−1G(t)n − K (t)n (G(t)(n − 1) + g(t)(v − t)) dt.

Proof. We compute separately the terms E[b1 > b−
] and E[b1 >

b−
]max

(
b−, b2

)
. We remind the reader that the cumulative dis-

tribution of the maximum of n independent random variables is
the product of their cumulative. For the first term we get∫ v

0
G(t)

∂K n

∂t
(t)dt = G(v) −

∫ v

0
g(t)K (t)ndt,

while the second term rewrites

n
∫ v

0
k(t)

∫ t

0
u(∂uGK n−1)(u)dudt =

n
∫ v

0
k(t)(tG(t)K n−1(t) −

∫ t

0
G(u)K (u)n−1du)dt.

Then, by applying an integration by part on the two terms of the
previous expression, we get

n
∫ v

0
k(t)tG(t)K n−1(t)dt =

∫ v

0
tG(t)∂tK (t)ndt

= vG(v) −

∫ v

0
(tg(t) + G(t))K (t)ndt

and

n
∫ v

0
k(t)

∫ t

0
G(u)K (u)n−1dudt =

∫ v

0
G(t)n(K (t)n−1

− K (t)n)dt

We get the result by summing everything.
We combine regularization of K by convolution with smooth

functions and the continuity of 1 with respect to K for the L∞

norm to extend to the case where K has a discontinuity. □

5. Optimal bid

In this section, we assume a channel is calling the buyer
several times (say n times) with exactly the same request, for
the same opportunity. From a technical perspective, it may not
be possible for the buyer to select one request to answer to, as
the involved time scales are too short to allow for a grouping of
all the requests for the same opportunity at bidding time. Thus,
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the buyer is restricted to apply the same strategy to all requests.
The main results in this section tell us that the standard strategies
(such as shading or sampling) may fail to find the optimal bid
when requests are duplicated.

The following result can be deduced from the previous one.

Lemma 2. We can restrict the bid (without loss of optimality) to be
valued in the support of g.

And now comes one of the main result.

Theorem 1 (Optimal Strategy for Identical Requests). For a bidder
receiving n identical requests, let

H(t) =
(n − 1)G(t)

g(t)(v − t) + (n − 1)G(t)
,

for t in the support of g. If H is non-decreasing, then it maximizes
the buyer’s expected payoff.

Proof. Let K be a maximizer of the buyer’s payoff. For any ϵ ∈

[0, 1], t ∈ [0, v], we define

Kt,ϵ := (1 − ϵ)K (t) + ϵH(t).

Observe that for i ∈ N

K i
t,ϵ − K i

t = iϵK (t)i−1(H(t) − K (t)) + o(ϵ).

Therefore the increment of payoff when replacing K by K.,ϵ is:∫ v

0
ϵK (t)n−2(H(t) − K (t))(n(G(t)(n − 1)

+g(t)(v − t))K (t) − (n − 1)G(t)ndt

+o(ϵ) =

ϵn
∫ v

0
K (t)n−2(G(t)(n − 1)

+g(t)(v − t))(H(t) − K (t))2dt + o(ϵ).

So for ϵ small enough, this quantity is strictly positive if K ̸= H
(on a non zero measure set), and K.,ϵ is admissible which is in
contradiction with the optimality of K . □

This result is counter intuitive: we insist that the optimal
solutions identified here are not in the same class of functions
as the one traditionally used to solve bidding problems. This
result puts into perspective the intuition that shading or sampling
is the right thing to do in the presence of duplicated identical
requests. Moreover, it shows that despite the supposedly simpli-
fying second-price rule, the computation of the optimal bidding
strategy is quite complex.

What happens when H is not increasing? We build an example
using the following probability density function: g(t) = 0.01
for t < 0.25 and t > 0.75, g(t) = 1.99 else. We plot the
resulting functions g , G and H in Fig. 2. Here is an intuition from
optimal control theory: assuming the existence of the bid density
distribution k(t), the buyer’s payoff is

n
∫ v

0
K (t)n−1G(t)(1 + k(t)(v − t) − K (t)).

Then, observe that optimizing the payoff is not that different from
solving an optimal control problem with k(t) ∈ [0, kmax] as a
control and K (t) as a state (one need to add a final constraint
on K (v), but it does not matter for our conclusion). Because
the Hamiltonian of the system is affine in the control k the
Pontryagin’s Maximum Principle (PMP) indicates that either k is
bang–bang (so we either have a Dirac of bid or no bid) or the term

Fig. 2. It is easy to build a distribution g (in red) so that the condition on H
for Theorem 1 is not met. Indeed, in this example H cannot be a cumulative
distribution (not monotone). However, the solution identified in Theorem 1 can
be adapted (see discussion in the text).

in factor of k in the Hamiltonian cancels. If we denote by p the
costate, this implies that nK n−1Gk(v − t) = −p. By the PMP, the
time derivative of this quantity is equal to n(n − 1)K n−2G(t)(1 −

k(t)(v − t)) − n2K n−1(t), which implies that K (y) = H(t). Hence
on an interval over which the control is not bang–bang, we shall
have K (t) = H(t).

To illustrate Theorem 1, take v = 1, G(t) = t , and n = 2.
Then K (t) = t . One can check that the buyer’s expected payoff
is 1/3 when using the randomized strategy, while he would only
get 1/4 by applying the optimal shading strategy.

We now pinpoint an easy extension:

Theorem 2 (Extension to Stochastic Number of Requests). If we
receive n requests with probability pn, then we can adapt Theorem 1
by setting

H(t) =

∑
n pnG(t)(n − 1)∑

n png(t)(1 − t) + G(t)(n − 1)

Proof. The adaptation of the proof of Theorem 1 is straight forw-
ard. □

6. Discussion

When the features of the bid requests allow the bidder to
identify them individually, the bidder can then design one bid-
ding strategy per type of request. We were not able to derive a
closed-form solution in this situation.

One important special case is the following. If requests across
channels have different features, and hence there is one bidding
strategy per request, then there is no need for the bidder to
randomize. A shading strategy is enough. In this case the opti-
mization problem is not convex (cf. Fig. 4). Even if the bidder
restricts himself to blacklisting strategies, he may still miss the
optimal. This is illustrated by the example in Fig. 3. Hence while
A/B tests appear quite attractive to decide which channels to turn
on or off, they may fail to provide satisfying answers, as illus-
trated with the example. (More generally solutions with greedy
approaches or local approaches are unlikely to succeed in finding
the optimal channel selection)

We observe that if the bidder bids optimally, the randomiza-
tion implies a loss of social welfare. The buyer with the highest
valuation may not get the item.



450 B. Heymann / Operations Research Letters 48 (2020) 446–451

Fig. 3. Here we suppose that we can define channel-specific strategies, and we
illustrate on an example why greedy blacklisting approaches may fail to find
the best blacklisting strategy. Suppose v = 2, the price to beat is 1 (constant),
and there are 3 channels, c1 , c2 and c3 . We receive a request from the three
channels with probability 1/3. Channel c1 is missing with probability 1/3 and c2
is missing with probability 1/3. Observe that if we bid on only one channel, we
might lose the opportunities that were not sent through this channel. On the
other hand, if we bid everywhere, we might end-up second pricing ourselves.
We suppose that we start with all channels turned on, and apply iteratively
blacklisting/whitelisting decisions to improve our payoff. If we start with the
three channels ci turned on, then blacklisting channel c1 or c2 brings 1, while
blacklisting c3 brings 2. However, the best solution is to keep only c3 . Hence a
greedy search might miss the optimal blacklisting solution.

Fig. 4. Here we suppose that we can define channel specific strategies. The
expected payoff as a function of the bids on channel 1 and channel 2. We
set the probability of being called by only one channel equal to 0.3 each, and
the probability to be called by both at the same time equal to 0.4 and the
competition is uniform on [0.1] and v = 1. We note that even in this simple
situation, the expected payoff is not convex. This illustrate the fact that finding
an optimal shading strategy might be complicated in practice.

Moreover, if the bidder uses a shading strategy, it may also
be detrimental for the seller. If we take for instance a bidder
facing a uniform distribution on [0,1] for an opportunity valued
at 1 and receiving two requests, then: (1) if the bidder does not
react to the duplication, he will be paying 1 to the seller, (2)
if the bidder randomizes according to K (t) = t , he would be
paying 1/3 on average. By comparison, (3) if the bidder were
offered a real second-price rule, the bidder would be paying 0.5
on average, hence, in the presence of an informed buyer, it is not
in the interest of the seller to send duplicated requests.

To our knowledge, this is the first academic work on bid
request duplications. We show that standard strategies (shading,
sampling, incremental tests) may fail to find the optimal bid
in a unified second-price auction because of requests duplica-
tion. In particular, the truth-fullness property of the standard
second-price auction is lost (even in a non-repeated setting).
This undesired complexity is an argument in favor of the recent
market move to unified first-price auctions.
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