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Dynamic Value: motivation and
challenge



Display Advertising

Figure 1: Display advertising allows the monetizing of publisher content
on the internet.
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Textbook solution to the bidding problem1

Bid = value

1In second price auctions, it is optimal to bid the value
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Textbook solution to the bidding problem2

Bid =

value for the display opportunity︷ ︸︸ ︷
α︸︷︷︸

constant factor

×Pr(Conversion|Display)︸ ︷︷ ︸
ctr

2In second price auctions, it is optimal to bid the valuation of the display
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Dynamic value
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In this context, the formula is not true anymore

???
(*_*)‘
| |

Bid = value for the display opportunity
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A possible approach

The optimal bid satisfies

b? = arg max
b

E
[
D · (V − Cost)|Bid = b

]
with

V︸︷︷︸
display valuation

= α︸︷︷︸
constant factor

·∆S −∆FCost

D = 1 if we win the auction

∆S = Pr(conversion|D = 1)− Pr(conversion|D = 0)

∆FCost = "How much the display changes future cost"

Martin Bompaire, Alexandre Gilotte, and BH. “Causal Models for Real Time
Bidding with Repeated User Interactions"
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The previous optimality condition is hard to solve in practice

Observe that ∆FCost and ∆S are

1. functions of the optimal bid

2. counterfactual quantities

→ Solving an analytic example would be a step in the right
direction
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Contributions

• We analyze the case value = k(τ), and provide an algorithm
to compute the optimal bidding strategy.

• We observe that empirically, there are constant shading factors
that perform very well.
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Repeated Bidding with Dynamic
Value



Dynamic value
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Model: (µ, k , q)

• τ : age of the last won auction

• µ: intensity of the auction arrivals

• k(τ): value of the item for the bidder (non-decreasing and
bounded)

• q(b): win rate probability that the buyer wins with a bid
equal to b

• p(b) average payment of the user when bidding b (second
price auction)

• γ: discount rate

→ Markov Chain with continuous time state and action.
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Continuation function

For a bidding function b : τ −→ b(τ) ∈ R+ , the expectation of the
bidder’s future payoff when the state is τ , is

Vb(τ)
def
= E

∞∑
i=1

e−γTi (k(τ(Ti ))− Ci ) 1{b(τ(Ti )) > Ci}︸ ︷︷ ︸
auction i payoff

.

where T1,T2 . . .Tn . . ., are times of the next auctions, C1...Cn...

the competition at these times.

V ?(τ)︸ ︷︷ ︸
Bellman value

def
= sup

b∈B
Vb(τ).
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Dynamic programming

Lemma

We have the relation

V ?
t =

∫ +∞

0
µe−(µ+γ)t

(
π(kt + V ?

0 − V ?
t ) + V ?

t

)
dt,

where

U(v , b) = q(b) · v − p(b) (= static payoff)

π(v) = U(v , v) (= static optimal payoff)

Moreover,

b?(τ) = max

0; k(τ) + V ?(0)− V ?(τ)︸ ︷︷ ︸
incremental gain from winning the auction

 .
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ODE Reformulation

Lemma
Set Φ(t, v , λ) = γv − µπ(kt + λ− v). The value function V ? is the
solution of the ordinary differential equation{

Ẏt = Φ(t,Yt , y0)

Y0 = y0
(Fy0)

for some y0 ∈ R+.

It should be noted that parameter y0 is not given.
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Sufficient condition for monotony of b?

Theorem

If k is concave, then b? is increasing with τ , and strictly increasing
on any interval where k strictly increases.
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Counter-example
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Main result

By the Cauchy-Lipschitz Theorem, the solution of the ordinary
differential equation {

Ẏt = Φ(t,Yt , λ)

Y0 = v0
(Fy0,λ)

admits a unique maximal solution Z y0,λ : t → Z y0,λ(t) for any
y0 > 0 and λ > 0. We set Z v (t) = Z v ,v (t).

Lemma

Suppose q continuous. The value V ?
0 is the unique v for which

limt→+∞ Z v (t) is finite.

17



We can solve numerically using a dichotomy

Figure 2: An example of Algorithm run. In red is the output of the
algorithm, in blue the iterates.
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What about shading policies? (1/2)
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Figure 3: Ratio Vα/V ? as a function of α with kτ = 1− e−t and µ = 5
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What about shading policies? (2/2)
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Figure 4: Ratio Vα/V ? as a function of α with µ = 5 and k(t) = 1− 1/1+t
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Conclusion

___ "In this end, it is not that bad, I just need to tweak α"
(*_*)
| |

Bid = α#︸︷︷︸
tweaked factor

×Pr(Conversion|Display)
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Next

1. Non-asymptotic guaranties for the shading policies

2. More general dynamics

3. Online learning of the parameters
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