Repeated Bidding with Dynamic Value

Benjamin Heymann, Alexandre Gilotte and Rémi Chan-Renous Journée des rencontres ENSAE-ENSAI, 12-13 septembre 2023

Criteo AI Lab and Fairplay

Dynamic Value: motivation and challenge

Display Advertising

Figure 1: Display advertising allows the monetizing of publisher content on the internet.

Textbook solution to the bidding problem¹

 $\mathsf{Bid} = \mathsf{value}$

¹In second price auctions, it is optimal to bid the value

²In second price auctions, it is optimal to bid the valuation of the display

Dynamic value

In this context, the formula is not true anymore

Bid = value for the display opportunity

A possible approach

The optimal bid satisfies

$$b^{\star} = rg\max_{b} \mathbb{E} \left[\frac{D}{V} \cdot (V - Cost) | Bid = b
ight]$$

with

Martin Bompaire, Alexandre Gilotte, and BH. "Causal Models for Real Time Bidding with Repeated User Interactions" Observe that $\triangle FCost$ and $\triangle S$ are

- 1. functions of the optimal bid
- 2. counterfactual quantities

 \rightarrow Solving an analytic example would be a step in the right direction

- We analyze the case value = k(τ), and provide an algorithm to compute the optimal bidding strategy.
- We observe that empirically, there are constant shading factors that perform very well.

Repeated Bidding with Dynamic Value

Dynamic value

Model: (μ, k, q)

- τ : age of the last won auction
- μ : intensity of the auction arrivals
- k(τ): value of the item for the bidder (non-decreasing and bounded)
- q(b): win rate probability that the buyer wins with a bid equal to b

- *p*(*b*) average payment of the user when bidding *b* (second price auction)
- γ : discount rate
- \rightarrow Markov Chain with continuous time state and action.

For a bidding function $b: \tau \longrightarrow b(\tau) \in \mathbb{R}^+$, the expectation of the bidder's future payoff when the state is τ , is

$$V_b(\tau) \stackrel{\text{def}}{=} \mathbb{E} \sum_{i=1}^{\infty} e^{-\gamma T_i} \underbrace{(k(\tau(T_i)) - C_i) \mathbf{1} \{ b(\tau(T_i)) > C_i \}}_{\text{auction } i \text{ payoff}}.$$

where $T_1, T_2 \dots T_n \dots$, are times of the next auctions, $C_1 \dots C_n \dots$ the competition at these times.

$$\underbrace{V^{\star}(\tau)}_{\text{Bellman value}} \stackrel{def}{=} \sup_{b \in \mathcal{B}} V_b(\tau)$$

Dynamic programming

Lemma

We have the relation

$$V_t^{\star} = \int_0^{+\infty} \mu e^{-(\mu+\gamma)t} \Big(\pi (k_t + V_0^{\star} - V_t^{\star}) + V_t^{\star} \Big) \mathrm{d}t,$$

where

$$U(v, b) = q(b) \cdot v - p(b)$$
 (= static payoff)
 $\pi(v) = U(v, v)$ (= static optimal payoff)

Moreover,

$$b^{\star}(au) = \max\left(0; \underbrace{k(au) + V^{\star}(0) - V^{\star}(au)}_{\textit{incremental gain from winning the auction}}
ight)$$

•

Lemma Set $\Phi(t, v, \lambda) = \gamma v - \mu \pi (k_t + \lambda - v)$. The value function V^{*} is the solution of the ordinary differential equation

$$\begin{cases} \dot{Y}_t = \Phi(t, Y_t, y_0) \\ Y_0 = y_0 \end{cases} (\mathcal{F}_{y_0})$$

for some $y_0 \in \mathbb{R}_+$.

It should be noted that parameter y_0 is not given.

Theorem

If k is concave, then b^* is increasing with τ , and strictly increasing on any interval where k strictly increases.

Counter-example

By the Cauchy-Lipschitz Theorem, the solution of the ordinary differential equation

$$\begin{cases} \dot{Y}_t = \Phi(t, Y_t, \lambda) \\ Y_0 = v_0 \end{cases} (\mathcal{F}_{y_0, \lambda})$$

admits a unique maximal solution $Z^{y_0,\lambda}: t \to Z^{y_0,\lambda}(t)$ for any $y_0 > 0$ and $\lambda > 0$. We set $Z^{\nu}(t) = Z^{\nu,\nu}(t)$.

Lemma

Suppose q continuous. The value V_0^* is the unique v for which $\lim_{t\to+\infty} Z^v(t)$ is finite.

We can solve numerically using a dichotomy

Figure 2: An example of Algorithm run. In red is the output of the algorithm, in blue the iterates.

What about shading policies? (1/2)

Figure 3: Ratio V_{α}/v^{\star} as a function of α with $k_{\tau} = 1 - e^{-t}$ and $\mu = 5$

What about shading policies? (2/2)

Figure 4: Ratio V_{α}/v^{\star} as a function of α with $\mu = 5$ and $k(t) = 1 - \frac{1}{1+t}$

- 1. Non-asymptotic guaranties for the shading policies
- 2. More general dynamics
- 3. Online learning of the parameters