Repeated Bidding with Dynamic Value

Benjamin Heymann, Alexandre Gilotte and Rémi Chan-Renous Journée des rencontres ENSAE-ENSAI, 12-13 septembre 2023

Criteo AI Lab and Fairplay

Dynamic Value: motivation and challenge

Display Advertising

Figure 1: Display advertising allows the monetizing of publisher content on the internet.

Textbook solution to the bidding problem ${ }^{1}$

Bid $=$ value

${ }^{1}$ In second price auctions, it is optimal to bid the value

Textbook solution to the bidding problem ${ }^{2}$

${ }^{2}$ In second price auctions, it is optimal to bid the valuation of the display

Dynamic value

???
$\left(^{*}{ }^{*}\right)^{\text {a }}$

Bid $=$ value for the display opportunity

A possible approach

The optimal bid satisfies

$$
b^{\star}=\underset{b}{\arg \max } \mathbb{E}[D \cdot(V-\text { Cost }) \mid \text { Bid }=b]
$$

with
$\underbrace{V}_{\text {display valuation }}=\underbrace{\alpha}_{\text {constant factor }} \cdot \Delta S-\Delta F \operatorname{Cost}$

$$
\begin{aligned}
D & =1 \quad \text { if we win the auction } \\
\Delta S & =\operatorname{Pr}(\text { conversion } \mid D=1)-\operatorname{Pr}(\text { conversion } \mid D=0)
\end{aligned}
$$

$$
\Delta F \text { Cost }=\text { "How much the display changes future cost" }
$$

Martin Bompaire, Alexandre Gilotte, and BH. "Causal Models for Real Time Bidding with Repeated User Interactions"

Observe that ΔF Cost and ΔS are

1. functions of the optimal bid
2. counterfactual quantities
\rightarrow Solving an analytic example would be a step in the right direction

Contributions

- We analyze the case value $=k(\tau)$, and provide an algorithm to compute the optimal bidding strategy.
- We observe that empirically, there are constant shading factors that perform very well.

Repeated Bidding with Dynamic Value

Dynamic value

Model: (μ, k, q)

- τ : age of the last won auction
- μ : intensity of the auction arrivals
- $k(\tau)$: value of the item for the bidder (non-decreasing and bounded)
- $q(b)$: win rate probability that the buyer wins with a bid equal to b
- $p(b)$ average payment of the user when bidding b (second price auction)
- γ : discount rate
\rightarrow Markov Chain with continuous time state and action.

Continuation function

For a bidding function $b: \tau \longrightarrow b(\tau) \in \mathbb{R}^{+}$, the expectation of the bidder's future payoff when the state is τ, is

$$
V_{b}(\tau) \stackrel{\text { def }}{=} \mathbb{E} \sum_{i=1}^{\infty} e^{-\gamma T_{i}} \underbrace{\left(k\left(\tau\left(T_{i}\right)\right)-C_{i}\right) 1\left\{b\left(\tau\left(T_{i}\right)\right)>C_{i}\right\}}_{\text {auction } i \text { payoff }} .
$$

where $T_{1}, T_{2} \ldots T_{n} \ldots$, are times of the next auctions, $C_{1} \ldots C_{n} \ldots$ the competition at these times.

$$
\underbrace{V^{\star}(\tau)}_{\text {Bellman value }} \stackrel{\text { def }}{=} \sup _{b \in \mathcal{B}} V_{b}(\tau) .
$$

Dynamic programming

Lemma

We have the relation

$$
V_{t}^{\star}=\int_{0}^{+\infty} \mu e^{-(\mu+\gamma) t}\left(\pi\left(k_{t}+V_{0}^{\star}-V_{t}^{\star}\right)+V_{t}^{\star}\right) \mathrm{d} t
$$

where

$$
\begin{aligned}
U(v, b) & =q(b) \cdot v-p(b) \quad(=\text { static payoff }) \\
\pi(v) & =U(v, v) \quad(=\text { static optimal payoff })
\end{aligned}
$$

Moreover,

$$
b^{\star}(\tau)=\max (0 ; \underbrace{k(\tau)+V^{\star}(0)-V^{\star}(\tau)}_{\text {incremental gain from winning the auction }}) .
$$

ODE Reformulation

Lemma
Set $\Phi(t, v, \lambda)=\gamma v-\mu \pi\left(k_{t}+\lambda-v\right)$. The value function V^{\star} is the solution of the ordinary differential equation

$$
\left\{\begin{array}{l}
\dot{Y}_{t}=\Phi\left(t, Y_{t}, y_{0}\right) \tag{0}\\
Y_{0}=y_{0}
\end{array}\right.
$$

for some $y_{0} \in \mathbb{R}_{+}$.

It should be noted that parameter y_{0} is not given.

Sufficient condition for monotony of b^{\star}

Theorem
If k is concave, then b^{\star} is increasing with τ, and strictly increasing on any interval where k strictly increases.

Counter-example

Main result

By the Cauchy-Lipschitz Theorem, the solution of the ordinary differential equation

$$
\left\{\begin{array}{l}
\dot{Y}_{t}=\Phi\left(t, Y_{t}, \lambda\right) \tag{0}\\
Y_{0}=v_{0}
\end{array}\right.
$$

admits a unique maximal solution $Z^{y_{0}, \lambda}: t \rightarrow Z^{y_{0}, \lambda}(t)$ for any $y_{0}>0$ and $\lambda>0$. We set $Z^{v}(t)=Z^{v, v}(t)$.

Lemma

Suppose q continuous. The value V_{0}^{\star} is the unique v for which $\lim _{t \rightarrow+\infty} Z^{\vee}(t)$ is finite.

We can solve numerically using a dichotomy

Figure 2: An example of Algorithm run. In red is the output of the algorithm, in blue the iterates.

What about shading policies? (1/2)

Figure 3: Ratio V_{α} / V^{*} as a function of α with $k_{\tau}=1-e^{-t}$ and $\mu=5$

What about shading policies? (2/2)

Figure 4: Ratio V_{α} / V^{*} as a function of α with $\mu=5$ and $k(t)=1-1 / 1+t$

Conclusion

[^0]
Next

1. Non-asymptotic guaranties for the shading policies
2. More general dynamics
3. Online learning of the parameters

[^0]: "In this end, it is not that bad, I just need to tweak α "
 (*_*)
 | |

 $$
 \text { Bid }=\underbrace{\alpha^{\#}}_{\text {tweaked factor }} \times \operatorname{Pr}(\text { Conversion } \mid \text { Display })
 $$

