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Abstract. Problem definition: Most of the display advertising inventory is sold through 
real-time auctions. The participants of these auctions are typically bidders (Google, Criteo, 
RTB House, and Trade Desk for instance) that participate on behalf of advertisers. In order 
to estimate the value of each display opportunity, they usually train advanced machine 
learning algorithms using historical data. In the labeled training set, the inputs are vectors 
of features representing each display opportunity, and the labels are the generated 
rewards. In practice, the rewards are given by the advertiser and are tied to whether a par
ticular user converts. Consequently, the rewards are aggregated at the user level and never 
observed at the display level. A fundamental task that has, to the best of our knowledge, 
been overlooked is to account for this mismatch and split, or attribute, the rewards at the 
right granularity level before training a learning algorithm. We call this the label attribution 
problem. Methodology/results: In this paper, we develop an approach to the label attribu
tion problem, which is both theoretically justified and practical. In particular, we develop a 
fixed point algorithm that allows for large-scale implementation and showcase our solu
tion using a large-scale publicly available data set from Criteo, a large demand-side plat
form. We dub our approach the fixed point label attribution algorithm. Managerial 
implications: There is often a hidden leap of faith when transforming the advertiser’s sig
nal into display labeling. Demand Side Platforms providers should be careful when build
ing their machine learning pipeline and carefully solve the label attribution step.

Keywords: online advertising • attribution • autobidding

1. Introduction
Digital advertising has been growing continuously 
since its inception and sustains a large part of the inter
net as we know it. It is indeed the main source of reve
nue for several tech giants (Google and Facebook in 
particular) and has attracted billions of dollars from 
advertisers over the last two decades. In 2019, the 
global digital ad spending exceeded 300 billion USD 
(Enberg 2019). What makes digital marketing so attrac
tive is that marketers can harness the power of data to 
make informed budget allocation decisions and show 
the right banner to the right customer at the right time.

In this paper, we take the point of view of a bidder 
(Google, Criteo, RTB House, and Trade Desk for 
instance) that participates in a real-time bidding ex
change on behalf of an advertiser (Balseiro and Cando
gan 2017). Usually, such a bidder is rewarded when an 
ad is won, clicked on, and followed in a short period 
of time by a conversion, typically a sale or any kind 
of action on the advertiser website, such as creating 
an account or putting an item in a basket. Whenever 
the bidder receives a display opportunity, he has to 

estimate its potential reward and then, whatever the 
auction mechanism, calibrate his bid accordingly. The 
prediction of this potential reward is usually the result 
of a supervised learning algorithm that requires labeled 
training samples, where the inputs are vectors of fea
tures x, which represent the display opportunity (these 
features encode contextual and user information), and 
the labels are the generated rewards. Table 1 shows a 
typical data set.

Using machine learning (ML) terminology, the reward 
corresponds to the label, and this is in fact a typical super
vised learning problem, where any ML algorithm can be 
used to predict the reward as a function of the display x.

This seemingly straightforward and widely adopted 
approach unfortunately fails to recognize a crucial aspect 
of the data; a conversion is the result of a sequence of 
interactions with a user. Indeed, the rewards, which are 
decided by the advertiser, are in practice tied to a partic
ular user and given not for a single display but for 
a sequence of interactions. An important step, which to 
the best of our knowledge, has been overlooked, is to 
account for this mismatch and split or attribute the 
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rewards at the display granularity. We dub this step the 
label attribution. Table 2 illustrates this step.

Existing approaches (Chapelle 2014) omit this impor
tant step of converting the raw data given by the adver
tiser into a data set that can be fed to an ML pipeline 
and attribute, somewhat heuristically, the reward given 
by the advertiser entirely to the last display. We refer to 
this approach as the last touch approach. Among the 
technical challenges a bidder is facing, recognizing this 
step and choosing a label attribution mechanism are 
often an understated problem.

In this paper, we formalize this missing step and pro
pose a principled and scalable solution to predict the 
value of a given display opportunity that accounts for 
the fact that the rewards given by the advertiser are 
aggregated at the user level.

1.1. Connection to Attribution in Online 
Advertising

This problem is related to the well-studied question of 
attribution in online advertising (i.e., assigning conver
sions credits to individual marketing interactions). It is 
usually posed from the point of view of the advertiser 

that needs to decide how to split the credit between dif
ferent advertising channels and is a fundamental ques
tion that informs the media mix optimization or the 
understanding of a customer’s journey. It has recently 
been identified as a top research priority by the Market
ing Science Institute (MSI 2024).

Similarly, in deciding how to split the reward given 
by the advertiser for sequences of display opportunities, 
the bidder also needs to perform his own attribution. To 
differentiate between these two levels of attribution, we 
refer to the bidder’s task as the label attribution problem. 
In fact, the reward received by the bidder is the result of 
the advertiser’s attribution. However, for our purposes, 
we assume that the attribution mechanism used by the 
advertiser, which impacts the reward of the bidder, is 
fixed and exogenous for the bidder. This leader-follower 
assumption is mild because the advertiser attribution 
rule is almost always fixed in practice.

1.2. Motivating Example
We next present an example to illustrate the limitations 
of ignoring the label attribution step and motivate the 
need for a more principled approach. Just like the last 

Table 1. A Typical Data Set Used by the Bidder to Estimate the Potential Reward of Future Display Opportunities

User ID

Features (x) Reward

Time stamp Clicked
Display 

environment User funnel : : : Conversion

1 10 0 Desktop Not exposed 0
1 11 1 Desktop Exposed 1
1 12 0 Desktop Engaged 0

2 20 1 Mobile Not exposed 0
2 21 1 Mobile Engaged 1
2 22 0 Desktop Engaged 0
2 23 0 Desktop Engaged 0

3 30 0 Mobile Not exposed 0

Table 2. Label Attribution Step: The Reward Is Spread Among the User’s Displays 
Instead of Being Arbitrarily Assigned to One of Them

User 
ID

Features (x) Reward Valuation (y)

Time 
stamp Clicked

Display 
environment : : : Conversion Label

1 10 0 Desktop
1

0.1
11 1 Desktop 0.7
12 0 Desktop 0.2

2 20 1 Mobile

1

0.5
21 1 Mobile 0.3

22 0 Desktop 0.1

23 0 Desktop 0.1

3 30 0 Mobile 0 0

Bompaire, Désir, and Heymann: Fixed Point Label Attribution for Real-Time Bidding 
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touch attribution used by advertisers, using a last touch 
approach for the label attribution fails to recognize the 
potential effect of early displays moving a customer up 
the conversion funnel and therefore, fails to acknowl
edge their contribution to generating the reward. This 
leads to undervaluing early display opportunities and 
overvaluing later ones.

To make this even more concrete and build some 
intuition, assume for simplicity that there are only two 
types of display opportunities. Displays A influence 
users’ behavior and increase their conversion probabil
ity. On the other hand, displays B do not influence the 
conversion probability at all but artificially always 
appear before a conversion, as is common for search 
ads (Blake et al. 2015). In such situation, the last touch 
label attribution wrongly allocates all the reward to dis
plays B. Over time, the bidder will undervalue displays 
A and overvalue displays B. This, in turn, will lead to 
fewer conversions and therefore, also lower the reward 
attributed to the bidder. This example highlights that 
the label attribution is a crucial step to align the bidder 
strategy with the given reward. It showcases the limita
tions of the current last touch approach and motivates 
the development of alternate methods of label attribu
tion. We revisit this example in our numerical experi
ments in Sections 5 and 7.

We end this example by noting that the motivation 
for using a last touch label attribution rule in practice 
seems to be driven by the misconception that if the 
advertiser uses a last touch attribution rule, which is a 
prevalent heuristic (Diemert et al. 2017, Ji and Wang 
2017), then the bidder should in turn use a last touch 
label attribution rule. Because our example does not 
depend on the particular advertiser attribution rule, it 
demonstrates that this belief is wrong.

1.3. Contribution
The Label Attribution Problem. In order to accurately 
bid in any auction, a bidder needs to learn a valuation 
function V to evaluate each display opportunity. The 
main challenge is that rewards are given at the user 
level (i.e., for sequences of displays or timelines) and 
cannot be used directly as labels. Consequently, we 
introduce in this paper the label attribution problem, 
which consists of finding a mapping µ that splits the 
reward for every user into labels for each individual dis
play opportunity. These labels can then be used to learn 
the valuation function V using any appropriate ML 
algorithm. Our first contribution is to identify and for
malize this label attribution problem, which has not, to 
the best of our knowledge, been studied before. In par
ticular, existing approaches implicitly assume that the 
label attribution step is done using a last touch method.

A Practical Algorithm. A natural way to value a dis
play is through its marginal contribution (i.e., the lift it 

provides to an existing sequence of displays). We call 
such a valuation additive as it decomposes the reward 
additively over the sequence of displays and next pro
pose a practical algorithm to learn such an additive val
uation. In particular, we argue that the label attribution 
needed to learn such valuation must satisfy a fixed 
point equation. We leverage this relation to propose an 
iterative algorithm that simultaneously learns the label 
attribution and valuation. We refer to our algorithm as 
the fixed point label attribution (FiPLA) algorithm. Our 
approach is very practical as it can easily be embedded 
into an existing ML pipeline by adding a fixed point 
feedback loop.

More precisely, our approach is iterative and alter
nates between an update step and a predict step. In 
each iteration k, we maintain two mappings: a label 
attribution mechanism µ(k), which is used to split the 
rewards, and a valuation mechanism V(k), which trans
forms any vector of features into a predicted reward. 
In the first step of each iteration, we update the map
ping µ(k) using the fixed point relation and the learned 
mapping V(k). We then, in a second step, split the 
rewards from the raw data using the label attribution 
µ(k) and learn a new mapping V(k+1) using any ML 
algorithm. Figure 1 summarizes our framework.

Numerical Experiments. We illustrate the benefits our 
approach through three different numerical experiments.1

1. First, we explore what the FiPLA algorithm learns 
in simple synthetic settings. We showcase that our 
approach can correctly capture critical aspects of typical 
user behaviors, such as a decreasing marginal return 
effect of advertising. More importantly, we highlight 
the limitations of the last touch approach.

2. We then test our approach on a large-scale data 
set. This real data set exhibits a large feature space, 
and we discuss how the FiPLA can be implemented in 
such a setting. We compare the output of the FiPLA 

algorithm with the typical last touch approach both 
qualitatively and using an independently proposed 
performance metric.

3. Finally, we simulate a real bidding environment 
and measure the benefits of using our approach on the 
bidder’s revenue. In our simulated settings, the profit 
associated with using the FiPLA algorithm is more than 
3.5 times higher than using a last touch approach, even 
when we allow for shading. This shows that the poten
tial benefits of carefully addressing the label attribution 
step can be significant.

A Principled Approach. We give some theoretical 
underpinning for our approach and mathematically 
formalize the relation between the fixed point equation 
and the additivity property for a slightly stylized 
model. In particular, under some assumptions, we 
show that the additivity property defines a unique 
label attribution mechanism and that the sequence of 
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mapping V(k) converges to the additive valuation. We 
further show that this intuitive label attribution enjoys 
several interesting properties. First, we show that bid
ding according to this additive valuation is myopic 
optimal (i.e., optimal if there are no other future 
opportunities). Moreover, we show that our proposed 
approach is distributionally robust (i.e., it does not 
depend on how many times each set of features has 
been observed). This is very useful from a learning 
perspective.

Agenda. The paper is organized as follows. We begin 
with a review of the literature in Section 2. We then 
introduce the notations that allow us to properly frame 
the label attribution problem in Section 3. We present 
our proposed learning framework in Section 4. In Sec
tion 5, we illustrate our method on a series of synthetic 
experiments. We then test our framework on a large 
publicly available data set in Section 6. In Section 7, we 
evaluate the impact on revenue of our proposed 
approach. The theoretical underpinning of our method 
is relegated to Appendix A.

2. Related Work
We survey the immediate related literature and refer to 
Wang et al. (2017) and Choi et al. (2020) for more back
ground on display advertising.

Most of the advertising is done through auctions, 
and we thus take the point of view of a bidder in this 
paper. Regardless of the auction mechanism, the bidder 
has to estimate the value he could generate from each 
display opportunity and then calibrate his bid accord
ingly. For example, in a second-price setting, for a given 
display opportunity, the standard in the industry is to 
bid the estimated average value earned with this speci
fic impression (Perlich et al. 2012, Wang et al. 2017). 
This is referred to as value-based bidding in Xu et al. 
(2016). We would like to emphasize that this behavior 

is myopically designed in the sense that the future policy 
is disregarded or equivalently, that the bid is computed 
as if this was the last opportunity to generate a conver
sion. Our approach to the label attribution problem 
adopts a similar philosophy and offers a principled 
myopic optimal approach. Without loss of generality, 
we assume that the bidder is compensated proportion
ally to the reward (i.e., the advertiser’s attribution) that 
he received.

Note that the bidder might need to compute some 
shading factor to adapt to the competition and the auc
tion mechanism (Balseiro and Gur 2019, Balseiro et al. 
2021) or solve a broader optimization problem to reach 
certain requirements given a budget constraint (Hojjat 
et al. 2017). However, these computations are beyond 
the scope of this paper.

Realizing the need for more principled solutions to 
the advertiser attribution problem, recent works have 
started proposing algorithmic approaches to go beyond 
rule-based heuristics, such as last touch. Using different 
generative models, Anderl et al. (2016) and Danaher 
(2018) both propose a counterfactual approach. The 
notion of Shapley value (Dalessandro et al. 2012, Ber
man 2018, Singal et al. 2022) has also been used to split 
the credit fairly among different channels. Lewis et al. 
(2011), Lewis and Rao (2015), and Johnson et al. (2017) 
all study models related to causality and advertiser 
attribution. Their approach is based on econometric 
parametric models.

Our research is inspired by the multitouch attribution 
literature (Shao and Li 2011, Ji et al. 2016, Li et al. 2018). 
This stream of work aims at designing machine learn
ing algorithms that assign fractional credits to different 
touchpoints from the advertiser’s standpoint. They also 
aim at solving the advertiser attribution problem but 
focus on the implementability of the solution rather 
than its theoretical justification. Despite using a differ
ent formalism, our work relates to the survival analysis 

Figure 1. The Traditional Label Attribution Approach Uses the Last Touch Heuristic 

Notes. By contrast, our proposed approach is an iterative algorithm that alternates between updating the attribution mapping µ(k) and the predic
tion function V(k). The update of the mapping µ(k) relies on a fixed point relation. Our framework can be implemented by adding a feedback loop 
to an existing ML pipeline.
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approach used in Laub et al. (2015). Moreover, the fixed 
point-based algorithm of Section 4 shares some charac
teristics with the Expectation Maximization algorithm 
in Zhang et al. (2014). Similarly, Ji and Wang (2017) 
relies on a Weibull model and is very close to our work. 
However, their choice of parametrization hides the 
fixed point property identified in Zhang et al. (2014).

On top of the advertiser attribution problem, some 
researchers have also considered the bidder’s problem as 
we do and tried to improve the buying process using 
machine learning pipelines. Chapelle et al. (2014) presents 
a bidding architecture, which relies on an implicit last 
touch label attribution. Chapelle (2014) provides a tech
nique to deal with the delay between displays and sales. 
Diemert et al. (2017) proposes to model the advertiser 
attribution to increase bidding performances. Their exper
imental results motivate our approach. More recently, 
Bompaire et al. (2021) provides a framework based on 
reinforcement learning and causal inference.

Finally, we would like to highlight that the question 
of attribution is not specific to online advertising. For 
instance, recent work in interpretable machine learning 
tries to attribute the prediction of a machine learning 
model to individual features of the input (Dhamdhere 
et al. 2018). In a very different context, Flores-Szwagrzak 
and Treibich (2020) develops a method to disentangle 
individual performance from team productivity. In each 
of these examples, the goal is to attribute some aggregate 
output to individual components of the input. Although 
Flores-Szwagrzak and Treibich (2020) develops an itera
tive algorithm, which is similar in spirit to our approach, 
their problem of splitting credit among team members is 
static in nature, whereas time is an important aspect of 
our problem. Another important difference is that we 
propose a machine learning implementation of our algo
rithm, which is able to leverage the presence of context 
features.

3. The Label Attribution Problem
In this section, we formalize the label attribution prob
lem. We begin by introducing the model and some 
notations.

3.1. Model and Notations
In practice, a bidder is given a data set of T observations 
{x1, : : : , xT}, where for each t ≤ T, xt represents a dis
play opportunity. Because of our focus on display 
advertising, we refer to an element x as a display or dis
play opportunity in the paper. However, these could in 
principle represent any types of marketing interactions. 
We let X ⊆ Rd be a set of potential display opportuni
ties. Each x ∈ X is a vector that encodes all the features 
associated with a display that the bidder can use to 
evaluate the display opportunity. For instance, this 
could include the type of products or creatives as well 

as contextual information, such as whether the user has 
already seen an ad. In particular, we can also capture 
customer heterogeneity by encoding the user’s features 
within x. In general, any feature that is useful for the 
bidder can be encoded in the display set X .

Agenda. Additionally, each display x is associated with 
a reward. Most often, this reward represents whether 
the display leads to a conversion or not. Importantly, 
we assume that this reward is given for a subset of dis
plays. For ease of exposition, we assume here that a 
group of displays corresponds to the interaction with a 
specific user. However, nothing prevents the bidder 
from defining a different grouping. More specifically, 
we assume that each display is associated with a user 
ut. We denote by U the set of users. Each user u ∈ U is 
associated with a reward ru. By doing this, we recog
nize that the reward ru is generated by the set of dis
plays Xu � {xt :∀t, ut � u}. From the bidder perspective, 
the value of the reward comes from a black box decided 
by the advertiser. In the case where the bidder and the 
advertiser are the same, these rewards could represent 
sales or any objective the advertiser is optimizing for. 
However, in general, the bidder and the advertiser are 
different actors.

Valuation. The bidder needs to estimate the value for 
each new display opportunity. We capture this using a 
valuation V : X → R+, which gives the value of a display 
opportunity. The bidder’s challenge is to appropriately 
learn a valuation V from the reward samples given at 
the user level.

3.2. Label Attribution
Because the rewards are given for each user, the 
reward data cannot be used directly to learn V. In 
order to train an ML algorithm, a training set has to be 
constructed from the reward data to learn V. This key 
step, which we call the label attribution, is often over
looked. It is nevertheless crucial, as different label attri
bution schemes lead to different valuation functions. 
One of our key contributions is to formalize this step.

Definition 1 (Label Attribution). A label attribution µ is a 
mapping from X × U to R+ that satisfies the following 
properties: 

1. ∀u ∈ U and ∀x ∉ Xu, µ(x |u) � 0;
2. ∀u ∈ U, ru �

P
x∈Xu

µ(x |u).

For a label attribution µ and display x ∈ X , µ(x |u)
represents the label of the display x for user u (i.e., the 
part of the reward ru attributed to display x). The first 
property states that we can only split the reward of a 
user among its displays. The second property states 
that the attribution has to be balanced and does not 
attribute more than the reward ru. Just like the adverti
ser’s attribution, the label attribution is splitting credit. 
However, the split is done at the more granular level of 
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the displays. Indeed, the bidder needs to predict the 
value of a display opportunity in order to calibrate his 
bid in real-time auctions. With this definition, a typical 
flow can be described as follows. 

1. Label attribution step. The label attribution µ is 
used to create a training set

S � {(x1, y1), : : : , (xT, yT)}, 

where for each t, yt � µ(xt |ut).
2. Prediction step. Some ML algorithm, typically a 

logistic regression, is trained to predict the display 
labels y from the corresponding vectors of features x, 
and the resulting mapping constitutes the estimated 
valuation V̂ .

As a concrete example, we can revisit the typical 
last touch approach with our notation. In particular, 
the last touch label attribution can be written for all 
(x, u) ∈ X × U as

µLT(x |u) �
ru, if x � xLT

u ,
0, otherwise,

(

where xLT
u ∈ Xu is the last display shown to user u.

We would like to end this section by emphasizing a 
key difference between the valuation and the label 
attribution. On the one hand, the label attribution is 
backward looking (i.e., it is a function of the entire set 
of displays that a user has been exposed to). On the 
other hand, the valuation is forward looking and only 
has access to the current display opportunity. Indeed, 
the valuation is to be used for bidding purposes.

4. The Additive Valuation
In this section, we propose a new approach to solve the 
label attribution problem, which is more principled 
and can efficiently be implemented in practice.

4.1. Additivity and Fixed Point Equation
We begin by arguing for an intuitive property that we 
wish our valuation to satisfy. In particular, a very natural 
way to evaluate the next display opportunity is through its 
marginal contribution. This method has recently received 
attention in the industry (Perlich et al. 2012, Wang et al. 
2017). It is also sometimes referred to as lift-based valua
tion (Xu et al. 2016). We formalize this property using a 
notion of additivity for our valuation function.

Definition 2 (Additivity). Let V be a valuation. We say 
that V satisfies the additivity property if for all u ∈ U 

and x ∈ X ,

V(x) � ru′ � ru, 

where Xu′ � Xu ∪ {x}.

In other words, the value associated with x is the 
incremental reward. Indeed, in the definition, users u′
and u have been exposed to the same set of display ads 
except for x, which only user u′ has seen. Stated differ
ently, the additivity property assumes that the value of 
a sequence of actions is separable over its individual ele
ments. Under this assumption, the valuation captures 
the immediate marginal effect of the display x with 
respect to a given sequence of actions and compared 
with not doing anything, which has a marginal value of 
zero. This is in line with several works on the additivity 
effect of ads (Shao and Li 2011, Dalessandro et al. 2012, 
Zhang et al. 2014, Ji and Wang 2017) as well as a Mar
kovian user behavior (Anderl et al. 2016, Singal et al. 
2022). Note that this is different than a counterfactual 
marginality used, for instance, in Anderl et al. (2016), 
Danaher (2018), and Bompaire et al. (2021), which 
assumes that there is a baseline policy and that the valu
ation quantifies the marginal contribution with respect 
to a deviation to the baseline policy. This is reminiscent 
of reinforcement learning. However, this is much 
more complex to implement as the counterfactual mar
ginality depends on a full policy, including future 
actions, whereas the temporal marginality does not. By 
focusing on temporal marginality, our approach enables 
a more straightforward and applicable approach in 
dynamic environments, like ad displays.

To learn such an additive valuation, we leverage a 
fixed point equation between the reward, the valua
tion, and the label attribution. In particular, in an ideal 
setting where V satisfies Definition 2 and is known, 
the label attribution would split the reward propor
tionally to V: that is, for all x ∈ X and u ∈ U,

µ(x |u) � V(x)
P

x′∈Xu
V(x′)

· ru: (1) 

It is immediate to see that this is a valid label attribu
tion. In Appendix A, we prove using a slightly more 
abstract setting that a valuation satisfies Definition 2
if and only if there exists a label attribution that satis
fies Equation (1), thereby formalizing the connection 
between proportional label attribution and additive 
valuation (see, in particular, Proposition A.1). The 
theoretical justifications are relegated to the appen
dix, and we focus here on how to practically learn an 
additive valuation. In particular, we next show how 
to leverage the fixed point Equation (1) to design a 
learning algorithm. Before describing our algorithm, 
we introduce a measure of convergence, which is 
motivated by Definition 2.

4.2. A Measure of Convergence
As explained in the previous section, we want to 
develop an algorithm that learns an additive valuation 
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(i.e., that is able to capture the lift in the reward pro
vided by showing an ad). We use this intuition to pro
pose a measure of convergence for our algorithm. More 
precisely, for every valuation V, we define Ladd as

Ladd(V) � 1
T ·
X

u∈U
ru · ln

X

x:ut�u
V(x)

 !

�
X

x:ut�u
V(x)

" #

:

The function Ladd can be thought of as a criterion to 
measure how well some valuation V satisfies the addi
tivity property. To see this informally, note that for a 
given user u ∈ U, setting the derivative of the inner 
term with respect to 

P
x:ut�uV(x) to zero leads to

ru
P

x:ut�uV(x)
� 1⇒

X

x:ut�u
V(x) � ru:

If we now do the same for a user u′ such that Xu′ � Xu 
∪ {x′}, we obtain

X

x:ut�u′
V(x) � V(x′) +

X

x:ut�u
V(x) � ru′ :

In turn, this implies that V(x′) � ru′ � ru, which is pre
cisely the definition of additivity (Definition 2). This 
intuition is formalized in Appendix B.2, where we 
show that under some assumptions, a valuation that 
satisfies Definition 2 minimizes Ladd(V) over all possi
ble valuations. We use this loss to measure the progress 
of our algorithm, which we describe in the next section. 
Note that this loss resembles a likelihood function. 
However, Ladd is not per se a likelihood function 
because we do not have an underlying model whose 
parameters we are trying to find.

4.3. FiPLA Algorithm
In Section 4.1, we introduce the fixed point Equation (1) 
relating the valuation, the label attribution, and the 
reward. However, in practice, we do not know V. For 
that reason, we propose a practical procedure that 
simultaneously learns V and µ. The proposed algorithm 
is iterative and maintains, in each iteration k, a label attri
bution µ(k) and a valuation V̂ (k). Each iteration k consists 
of three steps. 
• The first two steps are a label attribution step and a 

prediction step. These are similar to the ones described 
in Section 3.2.
• The third step is a fixed point step that exploits 

Equation (1) to update the label attribution µ(k+1) using 
the valuation computed in the previous step V̂ (k+1).

Algorithm 1 summarizes the procedure, which we 
refer to in the rest of the paper as the FiPLA algorithm. 
Compared with existing approaches, the main novelties 
of our approach are (1) explicitly doing the label attribu
tion (step 1) instead of implicitly using a last touch label 
attribution and (2) adding a fixed point update (step 3). 

As also illustrated in Figure 1 in Section 1, our approach 
suggests a change in paradigm, whereby instead of esti
mating the valuation from a fixed internal procedure, 
such as last touch attribution, the optimal pair of valua
tion and label attribution is rather iteratively and jointly 
updated until convergence. Moreover, this feedback 
loop is a simple change that can easily be implemented 
in an existing ML pipeline. Building on Table 2, Figure 2
further illustrates the workings of the algorithm.

Algorithm 1 (FiPLA Algorithm)
Input: A data set of displays {x1, : : : , xT}, a set of 
users U and associated rewards r1, : : : , r |U | , and an 
initial attribution µ0

Output: A valuation V̂FP

while |Ladd(V̂k+1
)�Ladd(V̂k

) | ≥ ɛ do 
1. Attribution step. Generate training data set by 

attributing rewards at the display level with the 
label attribution µk

S(k) � {(x1, y1), : : : , (xT, yT)}, 

where for each t, yt � µk(xt |ut).
2. Prediction step. Train any ML algorithm on the 

training set S(k+1). Update V̂ (k+1) to the resulting 
mapping.

3. Fixed point update. Update the label attribution 
µ(k+1) with the fixed point characterization

µ(k+1) � (xt |ut) ⊢→
V̂ (k+1)

(xt)
P

x′∈Xut
V̂ (k+1)

(x′)
· rut :

end

Finally, we provide theoretical justifications for our 
algorithm and prove in Proposition A.2 that the proce
dure converges under some assumption. This is done 
by relating our iterative procedure to a majorize- 
minorize algorithm.

5. Synthetic Experiments
In this section, we present some numerical experiments 
using synthetic data to build some intuition. The goal 
of this controlled experiment setup is to illustrate the 
benefits of using the FiPLA algorithm over the last 
touch approach.

5.1. Experimental Setups
We present three different settings, each with a differ
ent generative process. 

1. Constant valuation. In this setup, we construct 
user timelines as follows. At each time step, the user is 
exposed to an ad and converts with a constant proba
bility α. Additionally, independent of everything else, 
at each time step, there is also a constant probability of 
β that the user leaves the system. For each user time
line, we let the reward be equal to the number of 
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conversions. In this case, the only feature that we use 
is the number x of impressions, which in this case, is 
also the length of the user timeline. Note that in expec
tation, the reward grows proportionally to the number 
of impressions, and we expect VFP(x) to be constant 
equal to α.

2. Decreasing marginal return. In this second experi
ment, the probability of getting a reward is still increas
ing with the number of ads seen, but we now assume 
that it exhibits a decreasing marginal return effect. In 
particular, we use the same setup as previously used 
except in the way we compute the reward. More pre
cisely, for this setting, we associate a reward of one to a 
user’s timeline if the user converted at least once. In this 
case, the reward grows exponentially to one as the num
ber of impressions increases, and we expect VFP(x) to 
decay like (1� α)x. This aims at capturing a decreasing 
marginal return effect of advertising (Chapelle et al. 
2014, Zhang et al. 2014, Diemert et al. 2017).

3. Two display types. In this third setup, we revisit 
the motivating example from Section 1.2 and illustrate a 
multidimensional feature space. We assume that in each 
time step, there is an impression for a type A display 
with probability 0.5 and an impression for a type B dis
play otherwise. Building on Setup 1, we assume that 
the user converts with a constant probability αA after a 
display of type A and αB after a display of type B. In
dependent of everything else, there is also a constant 

probability β that the user leaves the system in each time 
step. Let x, respectively y, be the number of displays of 
type A, respectively type B, that a user has been exposed 
to. Additionally, we let z ∈ {A, B} denote the type of the 
current display opportunity. We apply the FiPLA algo
rithm with X � {(x, y, z) : x ∈ N, y ∈ N, z ∈ {A, B}}. In this 
case, generalizing the first setup, we expect VFP(x, y, A)
(respectively, VFP(x, y, B)) to be constant equal to αA 
(respectively, αB) for all values of x and y.

5.2. Results
In each experiment, we generate timelines for 3 million 
users and compare the valuation function V̂LT learned 
using a last touch approach with the valuation function 
V̂FP learned with the FiPLA algorithm. Figure 3 shows 
how the loss progresses with the number of iterations 
for Setup 1. This is to illustrate that the number of itera
tions needed to run the FiPLA algorithm in practice 
remains very reasonable. Even though we do not show 
these plots for all our experiments, the number of itera
tions remains similar throughout all the experiments of 
this section.

Setup 1. Figure 4(a) shows the learned valuations 
V̂LT
(x) and V̂FP

(x) for Setup 1. We observe that the 
FiPLA algorithm correctly learns the underlying true 
valuation because V̂FP

(x) is constant equal to α � 0:1. 
On the other hand, we see that V̂LT

(x) predicts a higher 

Figure 2. (Color online) Illustration of the FiPLA Algorithm 

Note. For each step, the quantities that get updated or learned are colored in blue.
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valuation when x is higher. This is precisely what we 
eluded to in the motivating example where the last touch 
approach tends to overestimate the value of impressions 
that appear later in the user journey and underestimate 
those that appear earlier. Indeed, if the label attribution is 
driven by the last touch philosophy, then an impression 
is evaluated through its probability of being the last 
impression. This is why we observe that V̂LT

(x) increases 
with x, whereas the true underlying value of each im
pression remains constant.

Setup 2. Figure 4(b) shows the learned valuations V̂LT
(x)

and V̂FP
(x) for Setup 2. In this case, recall that the under

lying model implies that the true valuation is decreasing 
convex. In other words, the more ads that a user has been 
exposed to, the less valuable the next ad is. This is exactly 
what V̂FP

(x) learns as illustrated by the convex decreas
ing shape. On the other hand, V̂LT

(x) is increasing, clearly 
failing to capture the decreasing marginal return effect 
from the generative process.

Setup 3. In this experiment, the feature space has dimen
sion 3, and we need to learn V(x, y, z), where x is the 
number of displays of type A (the useful displays), y is 
the number of displays of type B (the useless displays), 
and z is the type of the current display opportunity. 
Figure 5 shows the results of the learned valuations.

Looking at what the FiPLA algorithm learns when 
z�A (i.e., the impression is a display of type A), we 
observe in Figure 5(a) that V̂FP

(x, y, A) correctly re
covers the constant valuation from Setup 1. Addition
ally, we see that the valuation does not change as a 
function y, which is consistent with the generative 
model. When z�B, we observe in Figure 5(b) that 
V̂FP
(x, y, B) also recovers the right constant valuation. 

On the other hand, when the label attribution is done 
using last touch, we observe in Figure 5(a) that the val
uation V̂LT

(x, y, A) increases with x as in Figure 4(a). 
Furthermore, as illustrated in Figure 5(b), V̂LT is in fact 
almost the same whether z�A or z�B, and therefore, 
the last touch method does not differentiate the differ
ent types of ads.

For exposition purposes, we have presented a speci
fic effect in each experiment. However, note that even if 
we combine them, the FiPLA algorithm still recovers 
the true valuation. For instance, we present an extra 
experiment in Appendix C that combines the effects 
from Setups 2 and 3 (two display types and varying 
conversion probability). After seeing that our approach 
correctly captures critical aspects of typical behaviors 
and overcomes last touch weaknesses, we take it next 
to a real data set.

6. The “Criteo Attribution Modeling for 
Bidding” Data Set

In this section, we apply our framework to a real data 
set with a large feature space. The feature space size is 

Figure 3. (Color online) Convergence of the FiPLA Algo
rithm for Setup 1 

Figure 4. (Color online) Learned Valuations in Synthetic Experiments for Setups 1 and 2 

(a) (b)

Notes. Here, we use α � 0:1 and β � 0:3. Note that we only show the results for x less than 10 because for larger values of x, we have less than 100 
data points in the training set. (a) Setup 1: Constant valuation. (b) Setup 2: Decreasing marginal return.
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very high, and each input is unique with very high 
probability, as is often the case in real data sets. In this 
type of context, we often rely on ML techniques.

6.1. Data Description
“The dataset represents a sample of 30 days of Criteo 
live traffic data. Each line corresponds to one impres
sion (a banner) that was displayed to a user. For each 
banner we have detailed information about the con
text, if it was clicked, if it led to a conversion and if it 
led to a conversion that was attributed to Criteo or 
not. Data has been sub-sampled and anonymized so 
as not to disclose proprietary elements2”. In total, the 
data set contains approximately 16 million displays 
shown to 6 million users, among which 180,000 have 
converted. Each display has about 20 features, includ
ing 10 categorical features describing contextual infor
mation with user-specific information in particular. 
The nature of these categorical features is not dis
closed, but they are meant to be “used to learn the 
click/conversion models.” We thus consider them as 
correct descriptors of the user’s features at the time of 
the impression. This reflects real settings in which fea
ture engineering is made to transform nonstructured 
user’s history data into features that are suitable for a 
machine learning training. Some other notable fea
tures include whether the display was clicked or not, 
the time since the last click, and the number of dis
plays clicked by this user (see Diemert et al. 2017 for a 
complete description of the Criteo attribution model
ing for bidding data set).

6.2. Preprocessing and Implementation Details
Prepropressing. In order to be closer in spirit to the 
standard last touch benchmark and have stronger 

signals, we only keep displays that were clicked. More
over, to mitigate the side effects caused by the fixed 
window of observation, we remove the users for which 
some clicks are missing because such information can 
be inferred from the data. Additionally, to compare our 
results with existing metrics (see Section 6.3.3), we need 
binary rewards. Consequently, we split each user that 
triggered multiple conversions into multiple users. The 
resulting data set contains 16 million displays shown to 
8 million users, among which 196,000 have converted.

Hashing Trick. For the prediction step in the FiPLA algo
rithm, we use a regularized logistic regression together 
with a hashing trick described in Chapelle et al. (2014). 
For completeness, we give more details on this proce
dure. First, we treat all our variables as categorical fea
tures. To do so, we discretize the numerical features and 
group values into buckets. In our data set, there are only 
two numerical features: “time since last click” and 
“number of clicked displays.” In logistic regression, cate
gorical features are usually handled with one-hot encod
ing, where the size of the encoding is equal to the number 
of categories. For instance, suppose that there are three 
types of displays; then, the feature column corresponding 
to the display type is transformed as follows:

Display A→ [1, 0, 0]

Display B→ [0, 1, 0]

Display C→ [0, 0, 1]:

When the number of possible values for each categori
cal value explodes, this method is not scalable. This is 
where the hashing trick is useful because it allows for 
mapping the input to a lower-dimensional space of fixed 

Figure 5. (Color online) Learned Valuations in Synthetic Experiments for Setup 3 

(a) (b)

Notes. Here, we use αA � 0:20, αB � 0:05, and β � 0:1. (a) Learned valuation when z � A. (b) Learned valuation when z � B.
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and predetermined size denoted by m. More precisely, 
this is done by using a hashing function f that transforms 
the one-hot encoding vector to a lower-dimensional vec
tor. For our experiments, we have chosen m � 213 �

8,192. This is similar in spirit to an autoencoder in ML 
that learns a lower-dimensional representation of the 
data. In this case, note that the mapping is not learned, 
and there could potentially be better ways of projecting 
the data to a lower-dimensional space. However, this 
method is standard in the industry and efficient enough 
to run meaningful experiments. Finally, note that among 
the many implementations of the hashing trick that exist, 
we use the one implemented in scikit-learn (Pedre
gosa et al. 2011).

6.3. Results and Discussion
We use an 80/20 split on the user identifiers, where we 
train our model using 80% of the data set and test on 
the remaining 20%.

Convergence. We check the convergence of our algo
rithm using Ladd(V(k)) as a criterion. Figure 6(a) shows 
that the procedure converges in a few iterations similar 
to the previous set of experiments. Figure 6(b) also 
illustrates that our solution generalizes to the testing 
data set. Note that because we use a regularized logistic 
regression in the prediction step of the FiPLA algo
rithm, this introduces a small bias as can be seen by the 
nonmonotonicity of the iterates in Figure 6. Neverthe
less, we observe a significant improvement compared 
with the last touch method.

To put these results in perspective, we additionally 
tested the sensitivity of our results with respect to the 
size of the feature space. Indeed, with the hashing 
trick, we are embedding our feature space into a target 
space whose size can be controlled. Figure 7 illustrates 
the value of Ladd(V̂FP

) under different feature space 
sizes, where recall that V̂FP is the output of the FiPLA 

algorithm. As expected, Ladd(V̂FP
) increases with re

spect to the feature space size. On the other hand, there 
is a priori no reason to believe that when increasing 
the size of the feature space, Ladd(VLT) also increases. 
Indeed, the last touch method, unlike our valuation, is 
not designed to maximize Ladd. Somewhat reassuringly, 
we observe that Ladd(VLT) also increases with the feature 
space size. Interestingly, we observe that the improve
ment, as measured by Ladd, of going from VLT to V̂FP is 
similar in magnitude to increasing the size of the feature 
space by a factor of five, as illustrated by Figure 7.

Qualitative Insights. In the previous paragraph, we 
show that our method is improving Ladd. However, 
this is more of a sanity check as our method is designed 
to maximize Ladd. We next try to get some insights into 
how the proposed valuation is capturing some key ele
ments of the problem. We discuss two important effects 

Figure 6. (Color online) Convergence Ladd(V(k)) on the Criteo Attribution Data Set 

(a) (b)

Notes. (a) Training set. (b) Testing set.

Figure 7. (Color online) Additivity Loss LA on the Test Set as 
a Function of the Features Space Size 

Notes. ∆add represents the improvement from moving from VLT to V̂ 
when m � 210. ∆features represents the improvement of Ladd(V̂LT

)when 
going from m � 210 to m � 216.
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that have been discussed in the literature and recog
nized in practice.

The first one is the notion that the effect of a click 
decays over time. Consequently, it is less valuable to 
place an ad immediately after another one has been 
clicked. Several works have tackled this problem by 
making some assumptions on the underlying mecha
nism at play and hard coding this decaying effect (Cha
pelle et al. 2014, Zhang et al. 2014, Diemert et al. 2017). 
On the contrary, we do not hard code this relationship 
into our algorithm. Nevertheless, our valuation is able 
to learn this effect from data. Indeed, we show in Figure 
8(a) the relative difference between V̂FP and VLT as a 
function of the feature “hours since last click.” We 
observe that the last touch valuation tends to overesti
mate the value of an opportunity when a display was 
just clicked, and our approach is able to correct for this 
effect. This is coherent with the live experiments done 
in Diemert et al. (2017).

Another effect that has been observed in practice is 
the diminishing marginal effect of ads. As a user is 
being exposed to different displays, the incremental 
benefit of showing an extra ad decreases. This is similar 
in spirit to the motivating example in the introduction. 
This is what we explore in Figure 8(b), where we show 
the relative difference between V̂FP and VLT as a func
tion of the feature “number of clicks before display.” 
We observe that compared with the last touch bench
mark, our framework drastically reduces the valuation 
of a display with the number of preceding clicks.

Performance. Finally, we also evaluate the perfor
mance of our approach with a procedure used in Zhang 
et al. (2014) for multitouch attribution models. This pro
cedure consists of mapping the conversion probabili
ties of each display in a given user’s history to a single 
user’s conversion probability and was first proposed in 

Dalessandro et al. (2012) as a generative model. The 
proposed conversion probability of a history can be 
written with our notations as follows:

P(Ru � 1) � 1�
Y

t:ut�u
(1� V(xt))

 !

· δ |Xu | : (2) 

Here, P(Ru � 1) denotes the probability that a user u 
converts. Ru is a binary reward, and for each display 
xt ∈ Xu, we identify the conversion probability of xt 

with its valuation V(xt). Additionally, |Xu | represents 
the number of display interactions with user u. The first 
term in brackets represents the probability that at least 
one display leads to a conversion, assuming zero inter
action effects. The second term δ |Xu | accounts for the 
marginally decreasing effect of each ad. Zhang et al. 
(2014) fixes δ to 0.95. We use the same value for consis
tency. This metric aims at measuring how well the con
version for each displays can recover the reward of a 
timeline. We can then compare two models by evaluat
ing how well they rank the converted users according 
to Equation (2). A natural metric in this case is the 
mean average precision metric because it summarizes 
the precision-recall curve used in Zhang et al. (2014) 
with a single value. For that metric, our method pro
vides an out-of-sample improvement of 20.5% over the 
last touch attribution approach. This shows that our 
approach strongly outperforms the last touch valuation 
on this independent performance metric as well.

7. Impact on Revenue
Properly addressing the label attribution problem helps 
to better quantify the value of a display opportunity. 
Ultimately, these values are used in downstream tasks, 
such as bidding in a real-time bidding auction. In this 
section, we numerically explore the impact of the label 
attribution on the bidder’s profit. More precisely, we 

Figure 8. (Color online) Relative Variation of the Display Valuation Between V̂FP and VLT 

(a) (b)

Notes. (a) Time elapsed since the last user’s click. (b) Number of clicks already made by the user.
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simulate a bidding environment and compare two bid
ding strategies. These two strategies differ in their solu
tion to the label attribution problem and therefore, in 
the valuation function they use. In particular, one uses 
the last touch label attribution approach, whereas the 
other one uses the FiPLA algorithm.

7.1. Experiment Setup
Display Types. We revisit the synthetic experiments 
with an additional bidding layer. In particular, we 
assume that there are two types of displays. Displays of 
type A lead to a conversion with a constant probability 
α, whereas displays of type B never trigger a conver
sion. Similar to Setup 2 in Section 5, we associate a 
reward with a history if the user converts at least once, 
thus creating an effect of decreasing marginal returns 
when showing additional ads (of type A). We assume 
that the display type in each time step is sampled from 
a Bernoulli distribution of fixed parameter 0.5. As in 
Section 5, at each time step, there is a constant probabil
ity β � 1=4 that the user leaves the system.

Bidding Environment. For each display opportunity, 
we assume that a second-price auction takes place. 
More precisely, for each time step, we sample the high
est bid bhigh from a Beta distribution whose parameters 
depend on the display type. We assume that there is 
stronger competition for the displays of type A. More 
precisely, for display of type A, the competition was 
generated with a Beta distribution of parameters (5, 5), 
and for displays of type B, the competition was gener
ated with a Beta distribution of parameters (1, 9). The 
bidder computes a bid b using a given bidding strategy. 
If the b exceeds bhigh, then the bidder wins the auction 
and pays bhigh. On the other hand, if b is below bhigh, 
then the bidder loses the auction. For each user’s time
line, the bidder generates a reward if the user converts 
at least once and incurs a cost for each won auction.

Bidding Strategies. We compare two strategies that 
differ on their label attribution solution and therefore, 
on their estimated valuation function V̂ , where recall 
that the valuation function estimates the value of a dis
play opportunity. This estimated valuation is either 
V̂LT when the label attribution step is last touch or V̂FP 

when the FiPLA algorithm is used. We naturally refer 
to the two strategies as the last touch and FiPLA strate
gies. Both last touch and FiPLA algorithms were trained 
on the data generated by a bidder that always bids 0.5 
on 10,000 users. We then evaluate both strategies on 
10,000 new users. In terms of bidding, as often done in 
practice to control budget spend (Balseiro et al. 2021), 
we do not directly use the value given by V as a bid 
but allow the strategy to shade or modulate the value 
by a constant multiplier. For each strategy, we com
pute the revenue and spend for different values of the 
bidding multiplier, allowing us to generate a Pareto 
curve in the revenue-spend space.

7.2. Results
Figure 9 illustrates the results for different multiplier 
values. Looking at Figure 9(a), we see that for both strat
egies, a higher spend leads to a higher revenue. Indeed, 
the multiplier is often adjusted in practice to match the 
spend with a budget. We observe, however, that the 
FiPLA strategy clearly dominates the last touch strategy. 
Indeed, for all spend values, the revenue generated by 
the FiPLA strategy strictly exceeds that of the last touch 
strategy. Moreover, the Pareto curve for the FiPLA strat
egy is always above the 45◦ line, indicating that for all 
the multiplier values, the profit, which is the difference 
between the revenue and the spend, is always positive. 
On the other hand, the last touch strategy incurs a nega
tive profit for some multiplier values.

Inspecting the profit as a function of the multiplier, 
we see in Figure 9(b) that for the FiPLA strategy, the 

Figure 9. (Color online) Revenue and Spend of Both the FiPLA and Last Touch Strategies for Different Bidding Multipliers 

(a) (b)

Notes. (a) Pareto curve for different multiplier values. (b) Profit as a function of the bidding multiplier.
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higher profit is obtained when the multiplier is one 
(i.e., when the valuation V̂FP is used directly as a bid). 
Note that this is not the case for the last touch approach, 
which needs to be carefully calibrated. Even allowing 
for the last touch strategy to calibrate a multiplier, we 
see, as summarized in Table 3, that the profit generated 
by the FiPLA strategy is more than 3.5 times higher 
than the profit generated by the last touch strategy. 
This illustrates the importance of the label attribution 
problem and the benefits of properly addressing it.

8. Conclusion
In this paper, we introduce the label attribution prob
lem, which consists of splitting the reward given to a 
bidder for each user into labels for each display oppor
tunity. This is an important step needed to create a 
training data set for most ML algorithms, but it is often 
overlooked in practice. We formalize this problem and 
propose an approach to this problem, which we call the 
robust label attribution. Our method is motivated by an 
intuitive additivity property and enjoys several theoret
ical structural properties. It is also practical, and we 
show how it can be implemented at the scale required 
for display advertising.

Acknowledgments
The authors thank the department editor, the associate edi
tor, and the referees for their thoughtful and detailed com
ments, which greatly improved the presentation of the 
paper. The authors also thank Guillaume Roels and Xavier 
Taixés for their input that helped improve this work.

Appendix A. Theoretical Grounding for 
Additive Valuation

In this section, we provide some theoretical justification for 
our approach. To be able to prove our results, we first present 
a slightly more abstract setting.

A.1. Model: From Users to History
The goal of the paper is to present a data-driven approach to 
label attribution. As such, the model description in Section 3
is anchored on a data set of users. Instead, we move to a 
slightly more abstract setting, where we define a history h as 
a nonempty sequence of elements of X that represents a 
sequence of displays. Recall that X denotes the set of potential 
displays. We let H be the set of all possible histories. Unlike 

the set of users, which we use in the main body of the paper 
and which is given by the data, we assume that the histories 
are drawn from some probability P that denotes the propen
sity of each history to appear in the historical logs. Addition
ally, each history h ∈H is associated with an expected reward 
R(h) ∈ R+. One can map a user u to a history h and the corre
sponding reward ru to a particular realization of R(h). How
ever, different users with the same history might get different 
rewards, and hence, R(h) captures an expected reward. For 
the rest of this section, we drop the users terminology.

A.2. Notation and Assumptions
For any history h, we denote by |h| its size and use the notation 
h � [x1, : : : , x |h | ], where xi ∈ X for i ∈ {1, : : : , |h | }, to denote its 
individual elements. Furthermore, we write h � h′ if h is a 
subhistory of h′: that is, if h is equal to the sequence of the |h|
first displays of h′.

For any history h, we let h[1, : : : , i] be the projection of h onto 
its first i elements (i.e., for all i ≤ |h | , we have h[1, : : : , i] � [x1, 
: : : , xi]). With these notations, h′� h is equivalent to |h′ | ≥ |h |
and h′[1, : : : , |h | ] � h. Finally, for all x ∈ X and h ∈H, let h+ [x] �
[x1, : : : , x |h | , x] denote the history obtained from adding a dis
play x to a history h.

We end this section with two technical assumptions.

Assumption A.1. X is a finite set.

Assumption A.1 is not limiting in practice. Indeed, if some 
display features are continuous rather than categorical, they 
can be quantized (Chapelle et al. 2014) in order to satisfy 
Assumption A.1. We also make the following assumption on 
the underlying probability distribution of histories.

Assumption A.2. If P has support on a history, then it also has 
support on all its subhistories. Namely, if P(h) > 0 for some h ∈H, 
then P(h′) > 0 for all h′� h.

This is a mild assumption that is verified for various gener
ative models used in the literature, such as Markovian models 
(Archak et al. 2010, Anderl et al. 2016, Singal et al. 2022) or 
point process models (Xu et al. 2014).

A.3. Valuation and Perfect Valuation
Using the history notation, for every (x, h) ∈ X ×H, we let 
V(x |h) denote the expected value of the display x given the 
history h. Note that in practice, making this dependence is not 
critical as x often includes that information through features 
such as the number of ads seen or the number of ads clicked. 
However, we make this dependence explicit for the purpose 
of making our theoretical presentation more rigorous and 
precise. We also revisit the definition of label attribution as 
follows.

Definition A.1 (Label Attribution). A label attribution µ is a 
mapping from N ×H to R+ that satisfies the following 
properties. 

1. ∀h ∈H, ∀i > |h | , µ(i |h) � 0.
2. ∀h ∈H, R(h) �

P |h |
i�1 µ(i, h).

For a label attribution µ and history h � [x1, : : : , x |h | ], µ(i, h)
represents the label of the ith display xi (i.e., the part of the 
reward R(h) attributed to xi).

For a given observed history h and display opportunity x, 
recall that H � h+ [x] means that H starts with the sequence 

Table 3. Profit Obtained by Both Strategies With and 
Without Bidding Multipliers

No multiplier, $ Best multiplier, $

Last touch strategy 39 148
FiPLA strategy 698 698

Notes. Note that the FiPLA strategy does not benefit from using a 
bidding multiplier. This can be interpreted as a calibration property 
that is not satisfied by the last touch strategy.

Bompaire, Désir, and Heymann: Fixed Point Label Attribution for Real-Time Bidding 
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of displays of h+ [x], where h+ [x] is the history obtained 
from adding a display x to a history h. We next define the 
ideal value learned by a perfect algorithm.

Definition A.2 (Associated Valuation). For every label attri
bution µ and probability distribution P, the associated valua
tion Vµ

P(x |h) is defined, for all (x, h) ∈ X ×H, as

Vµ

P(x |h) � EH~P[µ( |h | + 1, H) |H � h+ [x]]: (A.1) 

Importantly, note that Vµ

P depends on the label attribution 
choice µ as well as the distribution P. Another way to interpret 
the definition of the associated valuation is that when the bidder 
observes a display opportunity x after a history h has already 
happened, the bidder does not know whether additional oppor
tunities will come in the future. If no other opportunity arises, 
then the display should be valued µ( |h | + 1, h+ [x]). On the 
other hand, if more displays are added, then the display should 
be valued µ( |h | + 1, H) for some H � h+ [x].

For instance, the valuation associated with the last touch 
label attribution is given by

VµLT

P (x |h) � R(h + [x]) · P(H � h + [x] |H � h + [x]):

If the label attribution is driven by the last touch philosophy, 
then an opportunity is evaluated through its probability of 
exactly preceding a conversion, which is precisely what the 
quantity P(H � h+ [x] |H � h+ [x]) is capturing. It is worth 
noticing that this valuation depends on the distribution of 
future displays. This is precisely the caveat observed in Section 
1 as this dependence might lead the bidder to overvalue dis
plays that come late in the conversion funnel.

A.4. Additive Valuation and Fixed Point 
Characterization
We can now properly define the additive valuation VFP as 
follows. For all (x, h) ∈ X ×H,

VFP(x |h) � R(h+ [x])�R(h): (A.2) 

Note that in the paper, additivity is a property one can strive 
for. However, we cannot properly define an additive valua
tion per se because the set of users, or realized history, may 
not be complete. On the other hand, in this abstract setting 
where we have a reward function R(h) for all history h ∈H, 
we can formally define the additive valuation VFP. In turn, 
we can define the additive label attribution µadd through a 
fixed point equation. In particular, for all h � [x1, : : : , x |h | ] ∈H 

and i ≤ |h | ,

µFP(i, h) �
VFP(xi |h[1, : : : , i�1])

P |h |
j�1 VFP(xj |h[1, : : : , j�1])

·R(h): (A.3) 

Note the obvious parallel with Equation (1). We are now 
ready to formalize the relation between additivity and pro
portional label attribution through the fixed point equation.

Proposition A.1. Vµ

P � VFP �µ � µFP.

In words, Proposition A.1 states that a label attribution 
leads to the additive valuation (i.e., the additive valuation is 
associated with the additive label attribution) if and only if 
the label attribution and valuation satisfy the fixed point 
Equation (B.1).

A.5. Convergence of the Algorithm
We now formally justify the design of our algorithm. In par
ticular, consider the following iterative procedure:

V(k+1)(x |h) � Vµ(k)

P (x |h), ∀(x, h) ∈ X × H, (A.4) 

where for all h � [x1, : : : , x |h | ] and i ≤ |h | ,

µ(k)(i, h) �
V(k)(xi |h[1, : : : , i�1])

P |h |
j�1 V(k)(xj |h[1, : : : , j�1])

·R(h): (A.5) 

Recall that for any µ and h ∈H, the valuation Vµ

P(h), defined 
in Equation (A.1), is the expected reward, where the expecta
tion is conditioned on H � h. Note that Equation (A.4) corre
sponds to the prediction step of the FiPLA algorithm in our 
ideal setting where one can learn perfectly. We also initialize 
the procedure with some label attribution µ(0).

Proposition A.2. For any µ(0) such that Vµ(0)

P (x |h) > 0 for all 
(x, h) ∈ X ×H, the procedure defined in Equations (A.4) and (A.5) 
converges. Moreover, µ(k) → µFP when k→∞.

Note that the technical assumption Vµ(0)

P (x |h) > 0 on the ini
tial valuation is not required to prove convergence but only 
to prove that the iterates converge to the robust label attribu
tion. Indeed, without this assumption, some coordinates can 
get stuck at their initial value. Proposition A.2 justifies the 
convergence of our proposed FiPLA algorithm in this abstract 
setting.

Remark A.1. Consider a setting where we only have one 
sample with history h � (x1, : : : , xI) but do not have data for 
any subhistory h � (x1, : : : , xi), ∀i < I. In this case, Assump
tion A.2 does not hold. However, for practical purposes, hav
ing access to a single sequence of displays is one setting 
where we do not have enough data to know what to attribute. 
Moreover, in such case, the FiPLA algorithm would be stuck 
at the initial guess for µ0. This means that the algorithm 
would revert to the heuristic used for initialization, such as 
any rule-based heuristic like last touch or uniform attribution. 
This looks like a reasonable fallback; when there are not 
enough data to learn anything, we do not learn anything 
beyond the initialization.

A.6. Additional Properties
We conclude this section by showing that the additive valua
tion has several notable properties. We begin by proving that 
bidding according to the additive valuation is the only myo
pic optimal bidding strategy and then show that the additive 
valuation is the only valuation that does not depend on the 
probability distribution P, making it very robust from a learn
ing perspective.

A.6.1. Myopic Optimality. We first show that bidding 
according to the robust valuation is myopic optimal (i.e., opti
mal if the sequence of displays terminates without any future 
opportunities).

Proposition A.3. V satisfies the additivity property if and only if 
it is myopic optimal (i.e., if in a second-price setting, bidding V is 
weakly dominant for any competition profile assuming there will be 
no other future opportunities).

We acknowledge that this notion of optimality is—as the 
name suggests—rather narrow; the potential combined effects 
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of the decision at stake (the display to be bought) and the 
future ones are neglected. Nevertheless, we believe that this 
notion has some merit. In particular, the standard notion of 
optimality implies that the best decision at a given time 
depends on what will be done in the future. However, solving 
the complete optimization problem is in practice often intracta
ble, and therefore, one can only hope for approximate solu
tions. By contrast, as we will discuss next, our proposed 
strategy does not depend on the probability distribution P 
(and hence, on the impact of our bidding strategy in the 
future), making it more robust. Finally, our aim is to also shift 
the discussion to principled approaches to label attribution, 
very much in the same spirit as Singal et al. (2022). Here, we 
prove that there is a unique valuation that is myopic optimal.

A.6.2. Distributional Robustness. We next show that the 
robust valuation does not depend on the underlying proba
bility distribution P (i.e., the propensity of each history to 
appear in the historical logs).

Proposition A.4. V satisfies the additivity property if and only if 
V is an associated valuation that does not depend on P but only on 
the reward function R (i.e., there exists a label attribution µ such 
that V � Vµ

P � Vµ

Q for any other probability distribution Q over H 

that has the same support as P).

Surprisingly, the additivity property also leads to distribu
tional robustness. From a learning perspective, this means 
that this approach alleviates the need for learning the under
lying probability distribution P. In particular, if the environ
ment changes and we receive a new probability distribution 
on the histories Q, then the expected reward can still be com
puted using the formula

EH~Q R(H) � EH~Q
X|H |

i�1
Vµ

P(Hi |H[1, : : : , i�1]), 

even when P≠Q. We emphasize that this is not true for any 
other valuation mechanism. Finally, distributional invariance 
is often related to causality (Peters et al. 2016, Arjovsky et al. 
2019), and it would be an interesting research direction to fur
ther explore these connections.

Appendix B. Proofs
B.1. Proof of Proposition A.1
We first show that the valuation associated with the additive 
label attribution is the additive valuation. First, by inspecting 
Equation (B.1), it is clear that µadd satisfies Definition A.1. 
Now, for all (x, h) ∈ X ×H, we have using Equation (A.1) that

VµFP

P (x |h) �EH~P

"
VFP(x |H[1, : : : , |h | ])

P |H |
j�1 VFP(Hj |H[1, : : : , j�1])

·R(H)

�
�
�
�
�
H �h+ [x]

#

�VFP(x |h) ·EH~P

"
R(H)

P |H |
j�1 VFP(Hj |H[1, : : : , j�1])

�
�
�
�
�
H�h

#

�VFP(x |h), 

where the last equality follows Equation (A.2).
We next show the reverse implication. We assume that we 

have a label attribution µ and valuation V such that the fixed 
point equation is verified: that is, for all h � [x1, : : : , x |h | ] and 

i ≤ |h | ,

µ(i, h) �
V(hi |h[1, : : : , i�1])

P |h |
j�1 V(xj |h[1, : : : , j�1])

·R(h):

Using Definition A.2, we have for all (x, h) ∈ X ×H,

Vµ

P(x |h) � EH~P[µ( |h | + 1, H) |H � h+ [x]]:

Consequently, for all h � [x1, : : : , x |h |] and i ≤ |h | , we obtain

X|h |

j�1
V(xj |h[1, : : : , j�1])

�
X|h |

j�1
EH~P[µ(j, H) |H � h[1, : : : , j]]

�
X|h |

i�1
EH~P

"
V(xi |h[1, : : : , i�1])

P |h |
j�1 V(xj |h[1, : : : , j�1])

·R(h) H � h[1, : : : , i]
�
�

#

� R(h), 

where we obtain the last equality by interchanging the expec
tation and sum operators. This concludes the proof.

B.2. Proof of Proposition A.2
To prove the convergence of the iterative procedure defined in 
Equations (A.4) and (A.5), we show that it corresponds to the 
iterates of a majorize-minorize (MM) algorithm. We remind the 
reader of the MM philosophy and refer to Hunter and Lange 
(2004) for more details. An MM algorithm aims at finding the 
maximizer θ∗ of a function f (θ). For that purpose, a surrogate 
function g(θ | θ̂) that depends on a current estimate θ̂ and is 
typically easier to maximize is identified and maximized 
instead. The key is to choose a surrogate function that min
orizes the objective function. A typical iteration of the MM algo
rithm can be written as follows. Given an estimate θ(m), we let

θ(m+1) � arg max
θ

g(θ |θ(m)):

The procedure is guaranteed to converge to a local maximum 
of f as long as the following are satisfied: 

1. f (θ) is concave,
2. g(θ(m) |θ(m)) � f (θ(m)), and
3. g(θ |θ(m)) ≤ f (θ), ∀θ.
We show that our iterative procedure is a special case of an 

MM algorithm by letting for all V : X ×H ⊢→ R+,

f (V) � EH~P

"

R(H) · ln
 

X

q∈{1, : : : , |H | }
V(Hq |H[1, : : : , q�1])

!

�
X

q∈{1, : : : , |H | }
V(Hq |H[1, : : : , q�1])

#

,

g(V |V̂) � EH~P
X

j∈{1, : : : , |H | }

(
V̂(Hj |H[1, : : : , j�1]) ·R(H)

P
q∈{1, : : : , |H | }V̂(Hq |H[1, : : : , q�1])

2

4

· ln
V(Hj |H[1, : : : , j�1])

V̂(Hj |H[1, : : : , j�1])

X

q∈{1, : : : , |H | }
V̂(Hq |H[1, : : : , q�1])

0

@

1

A

�V(Hj |H[1, : : : , j�1])

)3

5:
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Because the space of histories is finite, V can always be 
mapped to a finite-dimension vector. We do, however, keep 
the function notation for simplicity. First, note that f is strictly 
concave as a linear combination of concave functions. Second, 
observe that for all V,

g(V |V) � EH~P
X

j∈{1, : : : , |H | }

(
V(Hj |H[1, : : : , j�1]) · R(H)

P
q∈{1, : : : , |H | }V(Hq |H[1, : : : , q�1])

2

4

· ln
V(Hj |H[1, : : : , j�1])

V(Hj |H[1, : : : , j�1])

X

q∈{1, : : : , |H | }
V(Hq |H[1, : : : , q�1])

0

@

!

�V(Hj |H[1, : : : , j�1])

)3

5

� EH~P R(H) · ln
 

X

q∈{1, : : : , |H | }
V(Hq |H[1, : : : , q�1])

!2

4

·
X

j∈{1, : : : , |H | }

V(Hj |H[1, : : : , j�1])
P

q∈{1, : : : , |H | }V(Hq |H[1, : : : , q�1])

�
X

j∈{1, : : : , |H | }
V(Hj |H[1, : : : , j�1])

3

5 � f (V):

Third, the inequality f (V) ≥ g(V |V̂) follows by using the con
cavity of the logarithm and the Jensen inequality on the ran
dom variable X, which take the value

V(Hj |H[1, : : : , j�1])

V̂(Hj |H[1, : : : , j�1])
·

X

q∈{1, : : : , |H | }
V̂(Hq |H[1, : : : , q�1])

with probability V̂(Hj |H[1, : : : , j�1])=
P

q∈{1, : : : , |H | }V̂(Hq |H[1, : : : , q�1]). 
Finally, for any V̂, we have argmaxV g(V |V̂) � VµV̂

P by Lemma 
B.1, where for all V̂ : H ⊢→ R, we define µV̂ as follows. For all 
h � [x1, : : : , x |h | ] ∈H and i ≤ |h | ,

µV̂ (i, h) �
V̂(xi |h[1, : : : , i�1])

P |h |
j�1 V̂(xj |h[1, : : : , j�1])

·R(h): (B.1) 

Using Hunter and Lange (2004), we conclude that the sequence 
of V(k) corresponds to the iterates of an MM algorithm with 
strictly concave criteria and hence, converges. This concludes 
the proof of Proposition A.2.

Lemma B.1. For any V̂ : H ⊢→ R, arg maxV g(V |V̂) � VµV̂
P .

Proof. Because g(V |V̂) is concave in V, it suffices to show 
that VµV̂

P satisfies the first-order condition. In particular, for 
any (x, h) ∈ X ×H,

∂g(V |V̂)
∂V(x |h) �

∂

∂V(x |h)
X

t
P(t) ·

X

j∈{1, : : : , | t | }

(
V̂(tj | t[1, : : : , j�1]) ·R(t)

P
q∈{1, : : : , | t | }V̂(tq |t[1, : : : ,q�1])

0

@

· ln
V(tj | t[1, : : : , j�1])

V̂(tj | t[1, : : : , j�1])

X

q∈{1, : : : , | t | }
V̂(tq | t[1, : : : ,q�1])

0

@

1

A

�V(tj | t[1, : : : , j�1])

)1

A:

Note that h appears in the inner sum if and only if t � h+ [x]. 
Therefore, we can write

∂g(V |V̂)
∂V(x |h)

�
∂

∂V(x |h)
X

t�h+[x]
P(t) · V̂(x |h) ·R(t)

P
q∈{1, : : : , | t | }V̂(tq | t[1, : : : , q�1])

( 

· ln V(x |h)
V̂(x |h)

X

q∈{1, : : : , | t | }
V̂(tq | t[1, : : : , q�1])

0

@

1

A�V(x |h)

9
=

;

1

C
A:

Exchanging the derivative and sum operators yields

∂g(V |V̂)
∂V(x |h)

�
X

t�h+[x]
P(t) · V̂(x |h) · R(t)

P
q∈{1, : : : , | t | }V̂(tq | t[1, : : : , q�1])

·
1

V(x |h)� 1
( )

:

Setting this to zero for the first-order condition then implies 
that for all (x, h) ∈ X ×H, we have

V(x |h) �
1

P
t�h+[x]P(t)

·
X

t�h+[x]
P(t) ·

V̂(x |h) ·R(t)
P

q∈{1, : : : , | t | }V̂(tq | t[1, : : : , q�1])

 !

� EH~P
V̂(x |h)

P
q∈{1, : : : |H | }V̂(Hq |H[1, : : : , q�1])

·R(H) |H � h+ [x]
" #

� VµV̂
P (x |h):

This concludes the proof. w

B.3. Proof of Proposition A.3
Fix a history h ∈H, and display x ∈ X . Recall that bidding 
V(x |h) is myopic weakly dominant if and only if, in a second- 
price setting, bidding V(x |h) is weakly dominant optimal for 
any competition profile. For a given competition profile, 
assume that the highest bid t among competition follows a 
density g. The payoff of the auction is given by (R(h+ [x])� t)
if the auction is won (i.e., if the bid V(x |h) exceeds t) and R(h)
otherwise. The optimal bid V(x |h)must, therefore, maximize 
the following:

Z V(x |h)

0
(R(h+ [x])� t) · g(t) · dt+

Z +∞

V(x |h)
R(h) · g(t) · dt, 

where the first integral corresponds to the set of competition 
prices where we win the auction and the second term corre
sponds to competition bids above V. In the latter case, we 
obtain R(h) because of the missed opportunity. Writing the 
first-order condition yields

(R(h+ [x])�V(x |h)�R(h)) · g(V(x |h)) � 0 

for any g; hence, bidding V(x |h) is myopic weakly dominant 
if and only if R(h+ [x])�V(h)�R(h) � 0.

B.4. Proof of Proposition A.4
By Proposition A.1, if V is myopic optimal, then it is associ
ated with the additive attribution given in Equation (A.2), 
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which does not depend on P. We, therefore, only have to 
prove the reverse implication, which we do next.

Assume that V does not depend on P but only on the 
reward function R (i.e., there exists an internal attribution µ
such that V � Vµ

P � Vµ

Q for any other probability distribution 
Q over H). We begin by showing that there exists a unique 
valuation, which is distributionally robust: that is, if we let µ
be its associated attribution, we must have for any probability 
P and h ∈H,

V(h) � Vµ

P(h) � EH~P[µ( |h | , H) |H � h]:

The associated attribution defined by Equation (A.2) is distri
butionally robust because the expression of µ does not 
depend on P, which shows existence. We show unicity by 
contradiction. Assume that there are two such internal attri
butions µ1 and µ2. For all P, h, and j ≤ |h | , we must have

V(hj |h[1, : : : , j�1]) � EH~P[µ
1(j, H) |H � h[1, : : : , j]]

� EH~P[µ
2(j, H) |H � h[1, : : : , j]]:

Consider a probability Q such that the weight of all elements 
H � h[1, : : : , j] is moved to h[1, : : : , j]. Then, we have for all h and 
j ≤ |h | , µ1(j, h) � µ2(j, h). Note that because the probability Q 

must satisfy Assumption A.2, a limiting argument yields the 
result.

Appendix C. Additional Synthetic Experiments
In Section 5, we present different synthetic experiments, each 
illustrating a distinct effect. We present an additional experi
ment demonstrating how the FiPLA algorithm performs 
when several of these effects coexist. Specifically, we show 
the algorithm’s ability to recover the true valuation when 
there are two display types with either decreasing or increas
ing conversion probabilities. We adapt Setup 3 by making the 
conversion probability αA a function of x, the number of type 
A displays. To showcase the flexibility of our approach, we 
explore two different functional forms: (a) αA(x) � αA=(1+ x)
and (b) αA(x) � αA[1� 1=(1+ x)]. In other words, in one sce
nario, the conversion probability decreases with x, whereas in 
the other, it increases. The decreasing conversion probability 
mirrors a decreasing marginal return effect, similar to Setup 
2. However, if, for instance, the feature x represents the num
ber of visits to the brand’s website, then one may expect an 
increasing trend. Notably, our approach does not require 
prior knowledge of the actual dependence but can accurately 
recover the correct effect from the generative model as illus
trated in Figure C.1.

Figure C.1. (Color online) Learned Valuations When z � A 

(a) (b)

Notes. Here, we use αA � 0:20, αB � 0:05, and β � 0:1. (a) αA(x) � αA=(1+ x). (b) αA(x) � αA[1� 1=(1+ x)].
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Endnotes
1 All our codes are available at https://github.com/Mbompr/FiPLA.
2 https://ailab.criteo.com/criteo-attribution-modeling-bidding-dataset/ 
(accessed on March 1, 2024).
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Peters J, Bühlmann P, Meinshausen N (2016) Causal inference by 
using invariant prediction: Identification and confidence inter
vals. J. Roy. Statist. Soc. Ser. B Statist. Methodology 78(5):947–1012.

Shao X, Li L (2011) Data-driven multi-touch attribution models. Proc. ACM 
SIGKDD Internat. Conf. Knowledge Discovery Data Mining (ACM, New 
York), 258–264.

Singal R, Besbes O, Desir A, Goyal V, Iyengar G (2022) Shapley meets 
uniform: An axiomatic framework for attribution in online adver
tising. Management Sci. 68(10):7457–7479.

Wang J, Zhang W, Yuan S (2017) Display Advertising with Real-Time 
Bidding (RTB) and Behavioural Targeting (Now Publishers Inc., 
Hanover, MA).

Xu L, Duan JA, Whinston A (2014) Path to purchase: A mutually excit
ing point process model for online advertising and conversion. 
Management Sci. 60(6):1392–1412.

Xu J, Shao X, Ma J, Lee KC, Qi H, Lu Q (2016) Lift-based bidding in ad 
selection. Proc. AAAI Conf. Artificial Intelligence, vol. 30 (AAAI, 
Menlo Park, CA), 651–657.

Zhang Y, Wei Y, Ren J (2014) Multi-touch attribution in online adver
tising with survival theory. Proc. IEEE Internat. Conf. Data Mining 
ICDM 2015 (IEEE, Piscataway, NJ), 687–696.

Bompaire, Désir, and Heymann: Fixed Point Label Attribution for Real-Time Bidding 
Manufacturing & Service Operations Management, Articles in Advance, pp. 1–19, © 2024 INFORMS 19 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
01

:8
61

:3
cc

3:
26

20
:d

57
1:

71
c4

:8
c5

0:
16

fb
] 

on
 2

5 
M

ar
ch

 2
02

4,
 a

t 1
4:

27
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

https://github.com/Mbompr/FiPLA
https://ailab.criteo.com/criteo-attribution-modeling-bidding-dataset/
https://doi.org/10.48550/arXiv.1907.02893
https://doi.org/10.48550/arXiv.1907.02893
https://doi.org/10.48550/arXiv.1805.1223
https://doi.org/10.48550/arXiv.1805.1223
https://www.emarketer.com/content/global-digital-ad-spending-2019
https://www.emarketer.com/content/global-digital-ad-spending-2019
https://doi.org/10.48550/arXiv.1507.0282
https://doi.org/10.48550/arXiv.1809.0223
https://www.msi.org/wp-content/uploads/2021/07/MSI-2020-22-Research-Priorities-final.pdf-WORD.pdf
https://www.msi.org/wp-content/uploads/2021/07/MSI-2020-22-Research-Priorities-final.pdf-WORD.pdf

	Fixed Point Label Attribution for Real-Time Bidding
	Introduction
	Related Work
	The Label Attribution Problem
	The Additive Valuation
	Synthetic Experiments
	The &#x0201C;Criteo Attribution Modeling for Bidding&#x0201D; Data Set
	Impact on Revenue
	Conclusion


