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Abstract

We discuss a procurement problem with transportation losses
and piecewise linear production costs. We first provide an algo-
rithm based on Knaster-Tarski’s fixed point theorem to solve the
allocation problem in the quadratic losses case. We then iden-
tify a monotony condition on the types distribution under which
the Bayesian cost minimizing mechanism takes a simple form.
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1 Introduction

We discuss the problem of buying a divisible good when the demand and the
production are spread on a network. Specifically, the network structure induces
losses when the good travels, and potential constraints on the feasibility of the
allocation. To be more concrete, the network is made of n nodes (generically
denoted by i in the following) connected by edges in E ⊂ [n]× [n]1. On each of
those nodes: (a) an inelastic demand di is known and (b) there is a producer
who has a convex, increasing, piecewise linear production cost.

For simplicity, we assume the existence of q̄ such that the changes of slopes
of the production cost take place every multiple of q̄. Hence, if ci is the vector

1[k] denotes the integers 1 . . . k

1



Springer Nature 2021 LATEX template
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of slopes of producer i (of size m), then her cost for producing qi is
∑m

j=1 q
j
i c

j
i ,

where qji = min((qi − (j − 1)q̄)+, q̄).
The model resembles the electricity markets in [1–3], where the network

corresponds to the electric grid and where the line losses correspond to the
Joule effect. In the context of electricity production, it is very standard to
model production cost with convex functions, and in particular piecewise linear
convex functions because they interact well with operations research methods.
Electricity markets are known to be hard to model because of the counter flows
issues [4], but Palma-Benhke et al. [3] provide a condition that shall remove this
hurdle, such condition is satisfied, for example, when the network is radial [5]
(acyclic). Other models close to our setting were proposed, for example in [6],
[7], and [8], with a focus on the existence of a market equilibrium. Distributed
markets were also studied in [5, 9], with a focus on efficiency and linear cost
for transmissions.

Structure of the Article and Main Contributions

We put under scrutiny the interplay between the line losses and the piecewise
linear shape of the production cost. We present our contributions in the two
following sections.

First Section 2 introduces a fixed-point algorithm to compute the optimal
allocation when losses are quadratic (which in particular corresponds to the
setting encountered in [2, 3]). We can interpret the algorithm as if the produc-
ers situated at each node of the network were collectively trying to minimize
the total cost by communicating their current marginal costs. Such perspec-
tive (price decomposition) is a recurring pattern in the optimization of large
economic systems.

Second Section 3 presents a condition on the data that reduces the pro-
curement cost minimizing mechanism design problem to a Myerson auction
[10], which is quite unusual in a multidimensional setting. Myerson’s optimal
auctions were originally derived for one item direct auctions with Bayesian
priors on the value distributions of each buyer. Because it is cost optimal, we
believe the Myersonian mechanism provides a crucial benchmark to discuss
procurement mechanisms for divisible goods.
For readability’s sake, we defer most of the proofs to the appendix.

2 Study of the procurement problem for
quadratic losses

In this section, we state the procurement problem when the losses are
quadratic, and derive a fixed point algorithm to solve it. Such a setting
corresponds in particular to the one encountered in [2, 3].
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2.1 Mathematical program

The buyer needs to buy enough good so that the demand is met at each node.
In this section, we assume that when a quantity h of good flows from an undi-
rected edge (i, i′) ∈ E, there is a known constant ri,i′ such that ri,i′h

2 of the
good is lost on the way. In the context of electricity markets, this quadratic
coefficient corresponds to the Joule effect within the lines [4]. We use N(i) to
refer to the nodes adjacent to i in E. With this in mind, the buyer’s cost mini-
mizing allocation problem corresponds to the following mathematical program:

Problem 2.1

minimize
(q,h)

∑
i∈[n]

∑
j∈[m]

qji c
j
i

subject to
∑

j∈[m]

qji +
∑

i′∈N(i)

hi′,i − hi,i′ −
h2i,i′ + h2i′,i

2
ri,i′ ≥ di (λi)

hi,i′ ≥ 0 (γi,i′), qji ≥ 0 (µi,j), qji ≤ q̄ (νi,j).

(1)

The first set of inequalities correspond to the nodal constraint that demand
should be met. We indicate in parentheses the notations we use for the dual
variables associated with each constraint. Those variables live in R+.

2.2 First-order condition

For any node i and λ ∈ Rn such that λ > 0, let

Qi(λi, λ−i) = di +
∑

i′∈N(i)

λi′ − λi

ri,i′(λi + λi′)
+

(λi′ − λi)
2

2ri,i′(λi + λi′)2
. (2)

At the end of this section 2.2, we justify that this function could be interpreted
as the production of producer i when the multipliers are λi and λ−i.

We proceed with the computation of the dual of Problem 2.1. If a strong
duality theorem applies, then we should have

min
q,h

max
λ,γ,ν,µ

∑
i,j

qji c
j
i +

∑
i

λi

(
di − (

∑
j

qji +
∑

i′∈V (i)

hi′,i − hi,i′ −
h2
i,i′ + h2

i′,i

2
ri,i′)

)
−
∑
i,j

γi,jhi,j +
∑
i,j

νi,j(q
j
i − q̄)− µi,jq

j
i

= max
λ,γ,νµ

min
q,h

∑
i

λidi −
∑
i,j

νi,j q̄ + qji (c
j
i + νi,j − λi − µi,j)+

∑
(i,i′)∈E

hi,i′{λi − λi′ − γi,j}+ h2
i,i′ri,i′

λi + λi′

2
,
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so that, by necessary and sufficient first order condition, hi,i′ =
γi,i′+λi′−λi

ri,i′ (λi′+λi)
.

Then replacing h by its expression in the dual variables we get something
equivalent to

maximize
(λ,γ,µ,ν)

∑
i

(
λidi −

∑
j

νi,kq̄ −
∑

i′∈V (i)

(λi − λi′ − γi,j)
2

2ri,i′(λi + λi′)

)
subject to cji + νi,j ≥ λi + µi,j .

(3)

It follows that γi,i′ = (λi − λi′)
+. The criteria in (3) becomes

maximize
(λ,µ,ν)

∑
i

(
λidi −

∑
j

νi,j q̄ −
∑

i′∈V (i)

(λi − λi′)
2

4ri,i′(λi + λi′)

)
,

and since µ does not play any role in the admissibility of the other variables nor
in the objective, the set of constraints in (3) becomes cji + νi,j ≥ λi. It follows

that νi,j = (λi − cji )
+. We can now justify that we have strong duality: the

operator is continuous, convex-concave and the dual variables are restricted to
be in a bounded set. The dual of the allocation problem is therefore written:

maximize
λ≥0

∑
i

(
λidi − q̄

∑
j

(λi − cji )1{λi ≥ cji} −
∑

i′∈V (i)

(λi − λi′)
2

4ri,i′(λi + λi′)

)
.

The problem is now decomposable. We maximize, for i ∈ I, the criteria

λidi − q̄
∑
j∈[m]

(λi − cji )1{λi ≥ cji} −
∑

i′∈V (i)

(λi − λi′)
2

4ri,i′(λi + λi′)
, (4)

which is strictly concave for any λ−i (sum of concave and strictly concave
functions). We denote by Λi(λ−i) its maximizer and set Λ(λ1, ..., λn) :=
(Λ1(λ−1), ...,Λn(λ−n)). We get the next lemma by observing that the first
order necessary and sufficient condition on Λi is 0 ∈ Qi(Λi, λ−i) − Ki(Λi),
where

Ki(λi) =


0 if λi < c1i
[j − 1, j]q̄ if λi = cji
jq̄ if λi ∈]cji , c

j+1
i [, j ̸= m

mq̄ if λi ∈ λi ∈]cmi , c̄[.

Lemma 1 For any λ−i > 0, Λi(λ−i) is the unique solution of Qi(Λi, λ−i) ∈ Ki(Λi).

It is insightful to observe that Ki is monotone in the following sense:

s < t =⇒ x ≤ y ∀x ∈ Ki(s),∀y ∈ Ki(t) . (5)
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We point out that the primal (and dual) solution uniqueness is a desirable prop-
erty that is not systematic for the allocation problems of centralized market
models. The expression of h with respect to λ together with the supply con-
straint being binding at optimality justifies the interpretation of Qi proposed
for its introduction: it is the production of producer i when the multipliers are
λi and λ−i. We repeatedly use this interpretation in the following.

2.3 Fixed point algorithm

We proceed by showing that the solution of the dual problem is the unique fixed
point of the monotone operator Λ. First, we show that Λ is monotone. We then
state the Knaster-Tarski’s fixed-point Theorem our proof relies on. Follows
the two main results of this section: Theorem 7 claims that the solution is the
fixed-point of the operator, and Theorem 8 provides an explicit expression for
the operator.

Lemma 2 λ−i → Λi(λ−i) is non-decreasing.

Proof We proceed ad absurdum: let (λ−i, λ
′
−i) such that λ−i < λ′−i and Λi(λ−i) >

Λi(λ
′
−i). We observe that we have simultaneously

(a) Qi(Λi(λ−i), λ−i) < Qi(Λi(λ
′
−i), λ

′
−i) because Qi is decreasing in the first

variable and increasing in the second;
(b) Qi(Λi(λ

′
−i), λ

′
−i) ≤ Qi(Λi(λ−i), λ−i) because by Lemma 1, we have

Qi(Λi(λ−i), λ−i) ∈ K(Λi(λ−i)), Qi(Λi(λ
′
−i), λ

′
−i) ∈ K(Λi(λ

′
−i)) and by

relation (5), K is increasing;

We conclude by observing that (a) and (b) contradict each other. □

Our main argument relies on the following fixed point theorem [11].

Theorem 3 (Knaster-Tarski fixed point) Let L be a complete lattice and let f an
application from L to L and order preserving. Then the set of fixed points of f in L
is a complete lattice.

In particular, the set of fixed points of an order preserving function cannot be
empty. Since Λ is order preserving and any product of compact intervals is a complete
lattice when we consider the natural order, there is a fixed point, and the set of fixed
points is a lattice.

Lemma 4 λ is optimal for the dual ⇔ λ is a fixed point of Λ.

Proof If λ is optimal for the dual, then each component i maximizes the criteria (4),
thus λ is a fixed point of Λ. Conversely, if λ is a fixed point of Λ, then by definition,



Springer Nature 2021 LATEX template

6 Reverse auctions with transportation and convex cost

each component i maximizes the criteria (4). Hence, since the problem is (strictly)
concave, λ is optimal. □

A consequence of the previous lemma and of the dual problem being strictly concave
is that

Lemma 5 The set of fixed points of Λ is a singleton.

Lemma 6 For any monotone sequence λk converging to a point λ∗ in the domain
of Λ, Λ(λk) goes to Λ(λ∗) as k goes to infinity.

The intuition of the proof (that we choose to put in the appendix for clarity)
is that we can use the monotony of the sequence and Lemma 1 to characterize the
behavior of Λ on the neighborhood. We find that Λ is either constant or characterized
by the implicit function theorem.

Theorem 7 The sequence (Λk(cm1 ...cmn ))k∈N converges to the solution of the dual.

Proof Since Λ(cm1 ...cmn ) ≤ (cm1 ...cmn ), and since Λ is order preserving, the sequence
Λk(cm1 ...cmn ) = λk is non-increasing and bounded. Therefore, it converges to a point
x. By Berge Maximum theorem [15] for strictly concave criterion Λ is continuous.
Therefore x = limk λ

k = limk Λ(λ
k−1) = Λ(x), i.e. x is a fixed point. □

Theorem 8 For λ−i > 0, Λi(λ−i) has the following explicit expression:

Λi(λ−i) = min

[(
Ak
i (λ−i)

)
k=1..m

,
(
Bk
i (λ−i)

)
k=1..m−1

, cmi

]
(6)

where

Ak
i (λ−i) = cki if Qi(c

k
i , λ−i) < kq̄ else +∞, (7)

Bk
i (λ−i) = min

(
x ∈ [cki , c

k+1
i ]; Qi(x, λ−i) = kq̄

)
. (8)

We can interpret the fixed point algorithm as if some benevolent producers situ-
ated at each node of the network were exchanging information. They collectively try
to minimize the total cost and, to do so, they communicate their current marginal
costs. This marginal cost is the minimum of their local marginal cost and the marginal
cost of importation from the adjacent nodes. At each iteration, the producers com-
pute how much they are going to produce based on their current marginal cost. They
then update their marginal cost based on the (local) information they just received
and transmit this marginal cost to the adjacent nodes.
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3 Optimal Mechanism

3.1 Model, problem formulation and separability
assumption

We now present a condition that allows the auctioneer to build a Myerson-like
auction [10]. We discuss the slightly more general collection of procurement problems:

min
(h,q)∈A1

qc+ T (h), (9)

where

A1 = {(h, q) ∈ A2 s.t. gi(h) + qi ≥ di, ∀i ∈ [n]}

corresponds to the demand being met at each node, and

A2 = {(h, q) s.t. Ah+Bq = b, hmin ≤ h ≤ hmax, q > 0}

is the network linear constraint. Furthermore, the parameters hmin and hmax are
vectors of size | E |, T (h) is the convex cost associated to the flow plan h. The

cost slopes cji are independent random variables, of density fji , cumulative F j
i , and

support [cj−i , cj+i ], such that the virtual cost Ji,j : t → t+F j
i (t)/f

j
i (t) is increasing. It

is possible to remove this regularity condition using the ironing technique introduced
in Myerson’s seminal paper [10].

We pinpoint that an inequality is used inA1 instead of the equality encountered in
electricity market. Such equality is at the roots of the counter-flow issues [4]. Palma-
Benhke et al. [3] provide a condition that shall remove this hurdle, such condition is
satisfied, for example, when the network is radial [5].

The auctioneer pays xi the producer i to produce a quantity qi. The payment xi
depends on the allocation and on the prices proposed by the producers.

A direct mechanism is a triple (q, x, h) that maps any cost vector c to a production
vector q(c), a payment vector x(c) and a flow h(c). According to the revelation
principle [12], we can restrict our search to direct truthful mechanisms. With this
notation, the expected profit of producer i of type ci and bid c′i is Ui(ci, c

′
i) = Xi(c

′
i)−∑

j∈[m] c
j
iQ

j
i (c

′
i), where the capitalized quantities Qj

i (ci) = E−i min((qi(ci, c−i) −
(j − 1)q̄)+, q̄) and Xi(ci) = E−ixi(ci, c−i) correspond to the average of their non
capitalized counterpart over the competition realization.

We can now state the separability condition: the virtual cost Ji,j(c
j
i ) is

increasing in j for any ci. The separability condition is different from Myerson’s reg-
ularity assumption, as the monotony is on j. The virtual cost could be interpreted
as the real marginal cost augmented by a marginal information rent. The separa-
bility condition imposes the marginal information rent to be such that for any bid,
the virtual marginal prices are increasing, i.e. the virtual production cost function
is convex. The assumption is necessary to show the independence property of the
reformulation in Lemmas 17 and 18.

Let us fix a producer i and omit the index i in the notation to help the readability.
The separability condition asks for the virtual cost j → Jj(c

j) to be increasing

in j for any c = (c1, c2, . . . cm). This implies that for any producer i the sets Wj ,

where Wj = {Jj(cj), cj ∈ [cj−, cj+]}, have zero measure intersections.
Because there is no reason why the producers should willingly report their types,

we need to add a constraint on the design to enforce truthfulness. The incentive
compatibility (IC) constraints mean that the profit of any producer i of type ci should
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be maximal when the producer i bids her true type ci. In addition, since we want all
producers to participate in the market, we need the participation constraint (PC).
Without this constraint, the auctioneer would optimize as if the producers would
accept any deal (even deals where they would make a negative profit). An optimal
mechanism is a solution of

Problem 3.1

minimize
(q,x,h)

∑
i∈I

Exi(c) + ET (h(c))

subject to: (q(c), h(c)) ∈ A1

∀i,∀(c′i, ci) : Ui(ci, ci) ≥ Ui(ci, c
′
i) (IC) and Ui(ci, ci) ≥ 0 (PC).

We say that this problem is separable if it satisfies the separability condition
and if the solutions of (9) are unique when the cost vectors of each producer are
increasing.

3.2 Partial independence

The next result gives the condition that allows us to adapt Myerson’s techniques.

First order condition

We denote by 1{A1} the support function of A1 and set U =
{u = (u1, . . . , un) | ui ≤ 0}. Applying Theorem 10.1 from [13], we get that a
necessary and sufficient condition for an allocation to be optimal is that

0 ∈ ∂
∑
i

∑
j

min((qi − (j − 1)q̄)+, q̄)cji + ∂T (h) + 1{A1}(h, q). (10)

Now observe that

∂1{A1}(h, q) = NA1
(h, q) (11)

=

{
z −

∑
i

yi∇(gi(h) + qi)(h, qi) | y ∈ NU ([gi(h) + qi]i), z ∈ NA2
(h, q)

}
. (12)

The last equation requires the qualification constraint (Q) from [14] to be sat-
isfied, so one can use Theorem 4.3 from [14]. Still, note that no matter Q being
satisfied, NA1

does not depend on c.

Theorem 9 If Problem (3.1) is separable, denote by q(c) the solutions to (9). Then,
for any node i ∈ [n] and any j ∈ [m],

qji (s
1
i , . . . , s

j−1
i , cji , s

j+1
i , . . . , smi ; c−i) = qji (t

1
i , . . . , t

j−1
i , cji , t

j+1
i , . . . , tmi ; c−i) (13)

Proof Let c ∈ C. Either qji (c) ∈]0, q̄[ or q
j
i (c) ∈ {0, q̄}.
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First case

If qji (c) ∈]0, q̄[, take k ̸= j then cki does not appear in the first order condition (10).
By Berge’s Maximum Principle [15] the optimal allocation is upper hemicontinuous
with respect to the parameter c, by uniqueness of the solution of (9), we get that
c → qi(c) is continuous with respect to c. Thus there is a neighborhood of cki such

that qji is still in ]0, q̄[. In this neighborhood, condition (10) is satisfied for qji = qji (c),

by uniqueness of the solution, qji is constant with respect to cki on this neighborhood.

Second case

qji (c) ∈ {0, q̄}. Without loss of generality, let us assume that qji (c) = q̄. Here, we

need to observe that the sub-differential of the criteria with respect to qi is [c
j
i , c

j+1
i ],

thus the reasoning of the first case can be reproduced whenever k ̸= j + 1. So we
only need to deal with the situation where k = j + 1. Moreover, since qi is non-
increasing in cj+1

i , only an increase of cj+1
i can potentially trigger a change in qji .

Observe that by Berge’s Maximum Principle, qji is continuous with respect to the

parameter of interest cj+1
i . If it happens to take a value different than q̄, then this

value is also a solution to (10) for the initial parameters, which is in contradiction
with the uniqueness of the solution of (10). □

3.3 Main Result

Using Theorem 9, we can now derive the optimal mechanism.

Theorem 10 Suppose Problem (3.1) is separable. Let (qji , h) be such that

(qji (c
j
i , c−i), h(c)) minimizes∑

i∈I

∑
j∈[m]

qji Ji,j(c
j
i ) + T (h(c))

subject to (q(c), h(c)) ∈ A1 and set qi(c) =
∑

j∈[m] q
j
i (c

j
i , c−i) and xi(c) =∑

j∈[m] q
j
i (c

j
i , c−i)c

j
i +

∫ cj+i
cji

qji (t, c−i)dt, then (q, h, x) solves the optimal mechanism

design problem.

Hence, an almost direct application of Myerson’s auctions is possible for separable
problems. The proof of Theorem 10 is provided in the appendix. It is known that
multidimensional mechanism design is hard in general [16–18]. We have identified a
simple condition that allows us to reduce the problem to the one dimensional setting.

Here is an illustration of why we need the separability condition to hold. We take
a modified version of the electricity market model presented in Section 2. Suppose
that r = 0, d = 3, q̄ = 2 and there is a unique producer of interest who has two
production slopes, uniformly distributed in [0, 1] and [1, 2]. Hence, the separability
condition does not hold. We complete our setting with a competitor who has a fixed,
known production cost of c− = 1.2. By definition, J1(c1) = c1 + c1/1 = 2c1 and
J2(c2) = c2 + (c2 − 1)/1 = 2c2 − 1. Suppose the producer’s true type is (c1, c2) =
(0.8, 1.5), then he will not be allocated anything (J1(c1) > c− and J2(c2) > c−) if he
bids truthfully, his payoff would hence be 0. By contrast, if the producer announces
a type of (c1, ĉ2) = (0.8, 1.05), he will be allocated 2 units because J1(c1) > c− and
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J2(ĉ2) < c−. The payment would be equal to 2ĉ2+
∫ 1.1
1 1dt = 2∗1.05+0.1 = 2.2 for a

production cost of c1∗2 = 0.8∗2 = 1.6. Hence, the payoff would be 2.2−1.6 = 0.6 > 0.
Conclusion: the separability condition does not hold, and the auction is not incentive
compatible.

A similar issue would occur if instead of defining q as the sum of the qj , we
were to use the relation qj = min((q− (j − 1)q̄)+, q̄) because the producer would be
incentivized to increase ĉ1 so that J1(ĉ1) = J2(ĉ2).

Appendix A Proofs of Section 3

A.1 Notations

For the proof, it is convenient to set Kj
i (t) = F j

i (t)/f
j
i (t). We denote by Ci the

support of types of agent i, and by Cn the product of those supports. We also denote
by Vi(ci) = Ui(ci, ci) the expected profit of a producer i if he is of type ci and bids
his true production cost.

The proof relies on the comparison with two intermediary optimization problems:

Problem A.1

minimize
(q,x,h)

∑
i∈[n]

Exi(c)

subject to.

∀c ∈ Cn (q(c), h(c)) ∈ A1 (SD)

∀c ∈ Cn, ∀(i, i′) ∈ E : hi,i′(c) ≥ 0

∀i ∈ [n],∀j ∈ [m], (c−j , t1, t2), (c
1, . . . , tk, . . . , c

m) ∈ Ci, : Vi(c
1, .., cj−1, t1, c

j+1.., cm)

− Vi(c
1, .., cj−1, t2, c

j+1.., cm) =

∫ t2

t1

Qj
i (c

1, .., cj−1, s, cj+1.., cm)ds (H1)

∀i ∈ [n],∀(c, c′) ∈ Ci : (c− c′).(Qi(c)−Qi(c
′)) ≤ 0, (H2)

∀i ∈ [n],∀ci ∈ Ci : Vi(ci) ≥ 0 (PC),

and

Problem A.2

minimize
(q,h)

E
∑
i∈[n]

∑
j∈[m]

qji (c)(c
j
i +Kj

i (c
j
i ))

subject to

∀c ∈ Cn (q(c), h(c)) ∈ A1 (SD)

∀c ∈ Cn, ∀(i, i′) ∈ E : hi,i′(c) ≥ 0.

∀c ∈ Ci, ∀i ∈ [n] : xi(c) =
∑

j∈[m]

qji (c)c
j
i +

∫ cj+i

cji

qji (c
1
i . . . c

j−1
i , t, c

(j+1)+
1 . . . cm+

i ; c−i)dt,
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where the optimization variables (q, x, h) are constrained to be measurable function
from Cn to Rn

+, Rn
+ and RE

+. The functions Qi appearing in the constraint (H2) are

the vector functions with components Qj
i , they live in Rm, and the dot in (H2) refers

to the scalar product between two vectors of Rm. Problems 3.1 and A.1 are very
similar, but (IC) has been replaced by (H1) and (H2) and (PC) is expressed in terms
of V instead of U . This replacement is a trick introduced by Myerson in his 1981
paper. We show later on how we can compare Problems 3.1, A.1 and A.2, but note
that Problem A.2 is simpler, as the optimization part can be solved pointwise (and
x can be deduced from this pointwise optimization). The main result of this paper
is that the three problems have the same solution.

A.2 Necessary conditions for Problem 3.1

We derive some necessary conditions for a solution of Problem 3.1. In fact, we only
use constraint (IC) to deduce the two next results. The first lemma indicates that
any solution of the first problem should be such that Q is monotonous. This is a
classic result already introduced in [10]. The novelty here is that in the context of
piecewise linear production cost functions, this monotony result is expressed in a
vectorial sense.

Lemma 11 (Q monotony) If (q, x, h) is admissible for Problem 3.1, then for all
agents i ∈ [n] and all (ci, c

′
i) ∈ Ci

(ci − c′i).(Qi(ci)−Qi(c
′
i)) ≤ 0 (A1)

where . is the scalar product in Rm.

Proof We omit the i in the proof, as it plays no role. First, let (c, c′) ∈ C2
i by the

(IC) constraint,

U(c, c) ≥ U(c, c′) and U(c′, c′) ≥ U(c′, c) (A2)

i.e.
X(c)−

∑
j∈[m]

cjQj(c) ≥ X(c′)−
∑

j∈[m]

cjQj(c′)

X(c′)−
∑

j∈[m]

cj
′
Qj(c′) ≥ X(c)−

∑
j∈[m]

cj
′
Qj(c).

(A3)

We get the lemma after the summation of the two inequalities and simplification.
□

Lemma 11 indicates that an agent should be producing less on average in his ith
working zone if he is bidding a higher marginal cost for this working zone.

Lemma 12 If (q, x, h) is admissible for Problem 3.1 then for any agent (omitting i)
for any c, t1 and t2

V (c1, . . . , cj−1, t1, c
j+1, . . . , cm) =V (c1, . . . , cj−1, t2, c

j+1, . . . , cm)

−
∫ t1

t2

Qj(c1, . . . , cj−1, s, cj+1, . . . , cm)ds
(A4)
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Proof The inequality U(c, c) ≤ U(c, c′) implies that c′ → U(c, c′) is maximal at c for
any c ∈ Ci. Moreover,

t → U((c1, .., cj−1, t, cj+1.., cm), c) = X(c)−
∑

k∈[m]\{j}
ckQk(c)− tQj(c) (A5)

is absolutely continuous, differentiable with respect to t for all c, and its derivative is
−Qj(c). By definition of qj , Qj ≤ q̄. The envelope theorem yields the result. □

A.3 Necessary conditions for Problem A.1

We derive some necessary conditions for a solution of Problem A.1.

Lemma 13 If (q, x, h) is an optimal solution to Problem A.1 then (omitting i) for
all c ∈ Ci

V (c) =
∑

j∈[m]

∫ cj+

cj
Qj(c1 . . . cj−1, t, c(j+1)+, . . . , cm+)dt. (A6)

Proof According to (H1) ∑
j∈[m]

∫ cj+

cj

Qj(c1 . . . cj−1, t, c(j+1)+, . . . , cm+)dt =

∑
j∈[m]

V (c1, .., cj−1, cj , c(j+1)+, . . . , cm+)− V (c1, .., cj−1, c(j)+, . . . , cm+)

= V (c)− V (c1+, . . . , cm+).

This is an expression for V (c) as a sum of a positive function of c and a constant
V (c1+, . . . , cm+). It is clear that to optimize the criteria, this constant should be as
small as possible. The participation constraint (PC) imposes that V (c1+, . . . , cm+) ≥
0, therefore V (c1+, . . . , cm+) = 0. □

A consequence of this is:

Corollary 14 If (q, x, h) is an optimal solution of Problem A.1 then for all i ∈ [n],

Vi(c
1+
i , . . . , cm+

i ) = 0. (A7)

Proof See the proof of Lemma 13. □

Another consequence of lemma 13 is

Lemma 15 If (q, x, h) is an optimal solution of Problem A.1, the expected profit of
agent i (over his type) is

EVi(c) =
∑

j∈[m]

∫
(c1..cn)∈Ci

Qj
i (c

1, . . . , cj , c(j+1)+, . . . cm+)Kj
i (c)fi(c)dc. (A8)
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Proof By Lemma 13 and Fubini’s lemma, EVi(c) is equal to

E
∑

j∈[m]

∫ cj+

cj
Qj

i (c
1, . . . , cj−1, t, c(j+1)+, . . . cm+)dt

=
∑

j∈[m]

∫
c−j∈C−j

∫ cj+

cj=cj−

∫ cj+

t=cj
Qj

i (c
1, . . . , cj−1, t, c

(j+1)+
i , . . . cm+

i )fi(c)dtdc
jdc−j .

Our task is now to compute the inner term. Applying again Fubini’s lemma, this
term is equal to ∫ cj+

cj=cj−

∫ cj+

t=cj
Qj

i (c
1, . . . , cj−1, t, c(j+1)+, . . . cm+)fi(c)dtdc

j =∫ cj+

t=cj−

∫ t

cj=cj−
Qj

i (c
1, . . . , cj−1, t, c(j+1)+, . . . cm+)fi(c)dc

jdt =∫ cj+

t=cj−
Qj

i (c
1, . . . , cj−1, t, c(j+1)+, . . . cm+)(

∫ t

cj=cj−
fi(c)dc

j)dt =∫ cj+

t=cj−
Qj

i (c
1, . . . , cj−1, t, c(j+1)+, . . . cm+)(

∫ t

cj=cj−

fi(c)

fi(c−j , t)
dcj)fi(c

−j , t)dt =∫ cj+

t=cj−
Qj

i (c
1, . . . , cj−1, t, c(j+1)+, . . . cm+)Kj

i (t)fi(c
−j , t)dt =∫ cj+

cj=cj−
Qj

i (c
1, . . . , cj−1, cj , c(j+1)+, . . . cm+)Kj

i (c
j)fi(ci)dc

j .

We get the lemma by summing all the inner terms. □

Lemma 16 If (H1) is satisfied, then for any (a, b) ∈ C2
i (omitting i)

X(a)−X(b) =
∑

j∈[m]

[ajQj(a)−bjQj(b)+

∫ bj

aj
Qj(b1 . . . bj−1, t, aj+1 . . . am)dt]. (A9)

Proof Because of its length the proof is detailed in Appendix B □ □

Lemma 17 If (q, x, h) satisfies (H1) and (H2) and Qj
i is independent of c

j′

i for j′ > j,

then for all (c, c̃) ∈ C2

U(c, c) ≥ U(c, c̃). (A10)

Proof Since (H1) is satisfied, equation (A9) of Lemma 16 applies. We combine this
relation with the definition of the expected profit U . We obtain:

U(c, c)− U(c, c̃) =
∑

j∈[m]

cjQj(c)− c̃jQj(c̃)+

∫ c̃j

cj
Qj(c̃1, ..., c̃j−1, t, cj+1, ...cm)dt+ cjQj(c̃)− cjQj(c)
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=
∑

j∈[m]

(cj − c̃j)Qj(c̃1, ..., c̃j−1, c̃j)) +

∫ c̃j

cj
Qj(c̃1, ..., c̃j−1, t)dt

=
∑

j∈[m]

∫ c̃j

cj
Qj(c̃1, ..., c̃j−1, t)−Qj(c̃1, ..., c̃j−1, c̃j)dt,

where we used the independence hypothesis for the second equality. By (H2), which

implies the decreasingness of Qj with respect to cji when all other quantities are

fixed, if cj < c̃j then for any t ∈ [cj , c̃j ], Qj(t)−Qj(c̃j) ≥ 0. Otherwise, we use the

formula
∫ b
a = −

∫ a
b and that any t ∈ [c̃j , cj ] satisfies Qj(t)−Qj(c̃j) ≤ 0. Therefore,

U(c, c)− U(c, c̃) is non-negative. □

A.4 Necessary conditions for Problem A.2

We derive some properties for Problem A.2.

Lemma 18 There is an optimal solution (q, x, h) for Problem A.2 such that qji (and

Qj
i ) is independent of c

k
i for k ̸= j.

Proof This is a consequence of the separability assumption and Theorem 9. □

A.5 Proof of Theorem 10

Proof We proceed as follow:

• First note that (q, h, x) is the pointwise solution of Problem A.2 so it is
optimal for Problem A.2, moreover, by construction (q, h, x) satisfies (SD)
and h ≥ 0.

• Then note that by Lemma 15, (q, h, x) solves a relaxation of Problem A.1.
We need to check that it is admissible for Problem A.1.

• By definition of V (omitting i),

V (c1 . . . aj . . . cN )− V (c1 . . . bj . . . cN ) =

Ex(c1 . . . aj . . . cN )− x(c1 . . . aj . . . cm)− [Qj(aj)aj −Qj(bj)bj ] =

Eqji (a
j , c−i)a

j +

∫ cj+i

aj

qji (t, c−i)dt− Eqji (b
j , c−i)b

j −
∫ cj+i

bj
qji (t, c−i)dt

−[Qj(aj)aj −Qj(bj)bj ] = E
∫ bj

aj

qji (t, c−i)dt =

∫ bj

aj

Qj
i (t)dt

where we used the definition of x, the definition of Q and Fubini lemma’s
for the second, third and fourth equalities. Therefore (q, h, x) satisfies (H1).

• By construction, qji is non-increasing in cji + Kj
i (c

j
i ) then using the third

assumption, qji is non-increasing in cji so for any (a, b, c−i) ∈ C2 × C−i,

(aji − bji )(q
j
i (a

j
i , c−i)− qji (b

j
i , c−i)) ≤ 0, so by integration with respect to c−i,
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(aji−bji )(Q
j
i (a

j
i )−Qj

i (b
j
i ) ≤ 0 and then by summation over j, (c−c′).(Qi(c)−

Qi(c
′)) ≤ 0, i.e. (H2) is satisfied.

• Since (H1) is satisfied, Vi(ci) ≥ Vi(c
+
i ). Moreover, Vi(c

+
i ) = 0 by construction

of x. Therefore, the participation constraint (PC) is satisfied.
• Therefore, (q, h, x) is admissible for Problem A.1. So it solves Problem A.1.
• Since (q, h, x) solves Problem A.1, by Lemma 17 the incentive compatibility
constraint (IC) is satisfied. Moreover, by Lemma 13, (PC) is satisfied. Thus,
(q, h, x) is admissible for Problem 3.1. We need to check that it is optimal.

• By Lemmas 11 and 12, any optimal solution of Problem 3.1 should be admis-
sible for Problem A.1. Since the criteria are the same, we conclude that
(q, h, x) is an optimal solution of Problem 3.1.

□

Appendix B Proof of Lemma 16

Proof By definition

X(a1 . . . ak−1, b, ak+1 . . . am)−X(a1 . . . ak−1, c, ak+1 . . . am) =

V (a1 . . . b . . . am)− V (a1 . . . c . . . am) +∑
j ̸=k

aj [Qj(a1 . . . b . . . am)−Qj(a1 . . . c . . . am)]

+bQk(a1 . . . b . . . am)− cQk(a1 . . . c . . . am)

=

∫ c

b
Qk(a1 . . . s . . . am)ds+

∑
j ̸=k

aj [Qj(a1 . . . b . . . am)−Qj(a1 . . . c . . . am)]

+bQk(a1 . . . b . . . am)− cQk(a1 . . . c . . . am).

We use (H1) for the last equality. Then we apply a telescopic formula:

X(a)−X(b) = X(a1 . . . am)−X(b1, a2 . . . am) +

X(b1, a2 . . . am)−X(b1, b2 . . . am) + . . .

+X(b1 . . . bm
1

, am)−X(b1 . . . bm)

=

m∑
k=1

(

∫ bk

ak
Qk(b1 . . . s . . . am)ds) +

m∑
k=1

∑
j<k

bj [Qj(b1 . . . bk−1, ak, ak+1 . . . am)−Qj(b1 . . . bk−1, bk, ak+1 . . . am)]

+

m∑
k=1

∑
j>k

aj [Qj(b1 . . . bk−1, ak, ak+1 . . . am)−Qj(b1 . . . bk−1, bk, ak+1 . . . am)]

+
m∑

k=1

akQk(b1 . . . bk−1, ak, ak+1 . . . am)− bkQk(b1 . . . bk−1 . . . bk, ak+1 . . . am).

Reordering the last three terms, we get

m∑
j=1

∑
k>j

bj [Qj(b1 . . . bk−1, ak, ak+1 . . . am)−Qj(b1 . . . bk−1, bk, ak+1 . . . am)]
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+

m∑
j=1

∑
k<j

aj [Qj(b1 . . . bk−1, ak, ak+1 . . . am)−Qj(b1 . . . bk−1, bk, ak+1 . . . am)]

+

m∑
j=1

ajQj(b1 . . . bj − 1, aj , aj+1 . . . am)− bjQj(b1 . . . bj−1 . . . bj , aj+1 . . . am)

=

m∑
j=1

{bj
∑
k>j

[Qj(b1 . . . bk−1, ak, ak+1 . . . am)−Qj(b1 . . . bk−1, bk, ak+1 . . . am)]

+ajQj(b1 . . . bj−1, aj , aj+1 . . . am)− bjQj(b1 . . . bj−1 . . . bj , aj+1 . . . am) +

aj
∑
k<j

[Qj(b1 . . . bk−1, ak, ak+1 . . . am)−Qj(b1 . . . bk−1, bk, ak+1 . . . am)]}

=

m∑
j

ajQj(a1 . . . am)− bjQj(b1 . . . bm).

We end up with

X(a)−X(b) =

m∑
j=1

(ajQj(a)−bjQj(b)+

∫ bj

aj
Qj(b1 . . . bj−1, t, aj+1 . . . am)dt). (B11)

□
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tion, and Control. John Wiley & Sons, (2013)

[5] Cho, I.-K.: Competitive Equilibrium in a Radial Network. The RAND
Journal of Economics 34(3), 438 (2003)

[6] Aussel, D., Correa, R., Marechal, M.: Electricity Spot Market with Trans-
mission Losses. Journal of Industrial & Management Optimization 9(2),
275–290 (2013)

[7] Anderson, E.J., Holmberg, P., Philpott, A.B.: Mixed Strategies in Dis-
criminatory Divisible-Good Auctions. The RAND Journal of Economics
44(1), 1–32 (2013)



Springer Nature 2021 LATEX template

Reverse auctions with transportation and convex cost 17

[8] Hu, X., Ralph, D.: Using EPECs to Model Bilevel Games in Restructured
Electricity Markets with Locational Prices. Operations Research 55(5),
809–827 (2007)

[9] Babaioff, M., Pavlov, E., Nisan, N.: Mechanisms for a Spatially Dis-
tributed Market. Games and Economic Behavior 66(2), 660–684 (2009)

[10] Myerson, R.B.: Optimal Auction Design. Mathematics of Operations
Research 6(1), 58–73 (1981)

[11] Topkis, D.M.: Supermodularity and Complementarity. Princeton Univer-
sity Press, (1998)

[12] Krishna, V.: Auction Theory. Academic Press, (2009)

[13] Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer Science
& Business Media, (2009)

[14] Rockafellar, R.T.: Lagrange Multipliers and Optimality. SIAM Review
35(2), 183–238 (1993)

[15] Berge, C.: Topological Spaces: Including a Treatment of Multi-valued
Functions, Vector Spaces, and Convexity. Oliver & Boyd, (1997)

[16] Cai, Y., Daskalakis, C., Weinberg, S.M.: An Algorithmic Characteriza-
tion of Multi-dimensional Mechanisms. Proceedings of the Annual ACM
Symposium on Theory of Computing, 459–478 (2012)

[17] Manelli, A.M., Vincent, D.R.: Bundling as an Optimal Selling Mechanism
for a Multiple-Good Monopolist. Journal of Economic Theory 127(1),
1–35 (2006)

[18] Rochet, J.-C., Chone, P.: Ironing, Sweeping, and Multidimensional
Screening. Econometrica 66(4), 783 (1998)


	Introduction
	Structure of the Article and Main Contributions

	Study of the procurement problem for quadratic losses
	Mathematical program
	First-order condition
	Fixed point algorithm

	Optimal Mechanism
	Model, problem formulation and separability assumption
	Partial independence
	First order condition 
	First case
	Second case


	Main Result

	Proofs of Section 3
	Notations
	Necessary conditions for Problem 3.1
	Necessary conditions for Problem A.1
	Necessary conditions for Problem A.2
	Proof of Theorem 10

	Proof of Lemma 16

