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ABSTRACT
In production systems, contextual bandit approaches often rely on

direct reward models that take both action and context as input.

However, these models can suffer from confounding, making it dif-

ficult to isolate the effect of the action from that of the context. We

present Counterfactual Sample Identification, a new approach that

re-frames the problem: rather than predicting reward, it learns to

recognize which action led to a successful (binary) outcome by com-

paring it to a counterfactual action sampled from the logging policy

under the same context. The method is theoretically grounded and

consistently outperforms direct models in both synthetic experi-

ments and real-world deployments.
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1 INTRODUCTION
Contextual Bandits [12] serve as an important intermediate frame-

work between multi-armed bandits and full reinforcement learning

(RL) [21]. Like RL, they enable decision-making based on rich, high-

dimensional state (or context) information. However, they simplify

the problem by assuming that contexts are independent and iden-

tically distributed (i.i.d.). Because many real life systems, such as

some recommender systems [1], are well approximated by contex-

tual bandits, there is value in designing practical algorithms for

the Contextual Bandit model. A commonly used framework is the
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offline Contextual Bandit [22], in which a dataset has been col-

lected by an initial policy, and the goal is to learn from this dataset

a policy with the best expected reward.

IPS based methods. The best performing methods for offline con-

textual bandits are usually building an estimator of the expected

reward of a policy by Inverse Propensity Scoring (IPS) [5, 6, 9], and

searching for a parametrized policy directly maximizing this cri-

teria. While simple, IPS implementations may suffer from high

variance, many improvements have been proposed to make it more

stable [2, 4, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23].

Direct Method. In practice, a simple, commonly used algorithm

for contextual bandit consists in fitting a model of the expected re-

ward, as a function of the context 𝑥 and the chosen action 𝑎. This is

done by applying a supervised learning algorithm on the available

dataset [3, 18]. Then, from this model, a greedy policy is built by

returning the action which maximize the model-estimated expected

value. This method is sometimes referred as Direct Method (DM), or

Q-learning in the RL settings [21]. While it seems that a well-tuned

modern IPS algorithm would usually get better results, the Direct

Method seems to be still widely used in practical settings. There are

several reasons for this popularity: (a) It is relatively simpler, only

requiring a "classical" supervised learning algorithm. (b) It might

be more stable than IPS, or at least some IPS variants, because of

the potentially high variance of the IPS estimator. (c) It may be

useful to tune the level of exploration, required for learning the

next iterations of the policy, independently from the learning of the

policy. While 𝜖-greedy exploration is one approach, practitioners

often favor increased exploration of actions that the direct model

estimates as near-optimal. However, since IPS methods directly

output policies, it makes it less straightforward to tune this level

of exploration independently. (d) Contextual bandits are only ap-

proximations of real systems, and residual sequence effects (e.g. the

action of recommending an item to a user might slightly change the

state and reward later in the sequence) make the i.i.d. assumption

not strictly true. Even in the case when these effects are small, they

break the unbiasedness assumption which was a big selling point

from IPS. It is unclear how IPS - or other methods - perform in such

cases.
1

1
we believe that further research would be useful here. The same question applies to

the method we propose in this paper.
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When the Direct Method may fail to produce a good policy. One
typical case when DM may dramatically fail is when a variable

which explained the action chosen in the past data is missing from

the direct reward model; possibly leading to an instance of Simp-

son’s paradox [15]. While in practice the past policy is usually

another instance of the same model, there are still frequent cases

when this may happen, e.g. if an A/B test adds or removes some

features from the model. Another issue is that even with all relevant

features available to the model, it may be non trivial to entangle

the causal effect of an action from the effect of a context. This is

especially the case because actions tend to be strongly correlated

to contexts: both because some actions might be available only

in some contexts, and because the past policy correlates actions

and contexts. Because of these correlations, regularization methods

typically used on supervised learning may introduce some kind of

confounding in the final model [8]. These issues can be made more

acute on systems in which the context is much more predictive of

the reward than the action. This is typical in online advertising

recommender systems, where the probability of a click on an ad

may vary by 2 orders of magnitude with the inventory and user

state, while between a "good" and "average" recommendation the

same probability of click would typically change by a factor less

than 2.

Ranking models. In recommendation settings, where several

products are displayed together in the same context, another pop-

ular variant is the use of a ranking loss explicitly comparing the

reward of products from the same context. This avoids modeling

the effect of the context, and usually outperform pointwise DM.

Contribution. In this paper we propose a new method to learn a

policy from offline data which is halfway between IPS and DM,

Counterfactual sample identification (CSI). Like IPS, it requires the

knowledge of the logging policy, and uses it to lessen the effect

of confounding from context features. But like DM, it only fits a

supervised model with regular supervised learning methods. It can

be interpreted as an adaptation of ranking models to the pure con-

textual bandit setting, while also adapting the idea of Retrospective

Estimation [7] to a non-binary action space.

2 COUNTERFACTUAL SAMPLE
IDENTIFICATION (CSI)

2.1 Notations and context
The system receives a context 𝑋 , sampled from an unknown dis-

tribution. Each context comes with a finite set A(𝑥) of available
actions, and the systemmust select one action 𝑎 in this set. A reward

𝑌 , that depends on 𝑥 and 𝑎, is then received. We restrict to binary

rewards, that is, 𝑌 is a Bernoulli variable whose parameter depends

on 𝑥 and 𝑎.

A policy 𝜋 (· | 𝑥) is a conditional probability distribution over

actions. It maps each context 𝑥 to a distribution onA(𝑥). The offline

contextual bandit model assumes that we have a dataset made of

i.i.d. samples D = (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 )𝑖∈[𝑛] , where actions were sampled

from a known policy 𝜋0, and the goal is to choose a policy 𝜋𝜃 in

the parametrized family {𝜋𝜃 , 𝜃 ∈ Θ} that maximizes the expected

reward E𝑥E𝑎∼𝜋𝜃 ( · |𝑥 ) [𝑌 ].

2.2 Method presentation
We present here ’Counterfactual Sample Identification’ (CSI), a

method to address the confounding effect from context variables.

We first process the dataset as follows: (a) we keep only the positive

data point from D; (b) for each positive example (𝑥, 𝑎,𝑦 = 1), we
sample a "counterfactual" action 𝑎′ from the logging policy 𝑎′ ∼
𝜋0 (· | 𝑥); and produce two examples (𝑥, 𝑎, 𝑧 = 1) and (𝑥, 𝑎, 𝑧 = 0)
(c) we combine this two examples (𝑥𝑖 , 𝑎′, 𝑧 = 0) and (𝑥𝑖 , 𝑎, 𝑧 = 1)
into a new log. Here 𝑍 is an auxiliary variable indicating wether the

sample contains the true action 𝑎 or the resample 𝑎′. Said otherwise,
we build:
ˆD = {(𝑥, 𝑎′, 𝑧 = 0) : (𝑥, 𝑎, 1) ∈ D} ∪ {(𝑥, 𝑎, 𝑧 = 1) : (𝑥, 𝑎, 1) ∈ D},

where 𝑎′ is sampled from 𝜋0 (· | 𝑥). We then train a supervised

learning algorithm on
ˆD using 𝑧 as target and (𝑥, 𝑎) as features.

Let 𝑓 (𝑥, 𝑎) be the resulting model. The greedy CSI policy consists

in playing 𝑎∗ := argmax𝑎∈A(𝑥 ) 𝑓 (𝑥, 𝑎). 2
Intuitively, the CSI model learns to recognize if the action is the

"true" actionwhich led to a reward𝑦𝑖 = 1 , or just a resample from 𝜋0
independent from 𝑌 . This idea is formalized in Lemma 2.1, which

relates the learned probability 𝑓 (𝑥, 𝑎) and the expected reward

P(𝑌 = 1|, 𝐴 = 𝑎,𝑋 = 𝑥) of action 𝑎 in context 𝑥 .

Lemma 2.1. Let 𝜎 : 𝑥 → 1/1 + exp(−𝑥) be the sigmoid function.
Under a uniform coverage policy 𝜋0, we have the following identity:

P(𝑍 = 1|𝐴 = 𝑎,𝑋 = 𝑥) = 𝜎

(
log

(
P(𝑌 = 1|𝐴 = 𝑎,𝑋 = 𝑥)

P(𝑌 = 1|𝑋 = 𝑥)

) )
.

The proof can be found in Appendix A. Note that P(𝑌 = 1|𝑋 = 𝑥)
depends on the policy 𝜋0, but not on𝑎, this implies that P(𝑍 = 1|𝐴 =

𝑎,𝑋 = 𝑎) orders the actions by their expected reward in context

x. The fraction
P(𝑌=1 |,𝐴=𝑎,𝑋=𝑥 )

P(𝑌=1 |𝑋=𝑥 ) which appears in the log in the

equation above can be thought as the multiplicative advantage of
playing action 𝑎 in context 𝑥 - compared to the typical outcome

when following 𝜋0. We therefore have

argmax

𝑎∈A(𝑥 )
P(𝑍 = 1|𝑋 = 𝑥,𝐴 = 𝑎,𝑌 = 1)︸                                ︷︷                                ︸

≈𝑓 (𝑥,𝑎)

= argmax

𝑎∈A(𝑥 )
P(𝑌 = 1|𝑋 = 𝑥,𝐴 = 𝑎).

In a nutshell, instead of modeling the expected reward P(𝑌 |𝑥, 𝑎),
our method directly models the multiplicative advantage. It thus

avoids the necessity to learn the direct impact of the context on

the reward: 𝑃 (𝑍 = 1|𝑌 = 1, 𝑋 = 𝑥) = 0.5 for all 𝑥 , and thus a

feature of 𝑥 matters in this model only if the relative performances

of the actions change with this feature. It is therefore reasonable to

expect that CSI performs better on instances where modeling the

multiplicative advantage is easier than modeling the reward.

Dependency on 𝜋0. Like the importance-weight based methods,

the CSI relies on having a dataset collected from a stochastic policy

𝜋0 that explores well the action space, and it degenerates when

this assumption does not hold. To see why, let us assume that for a

given context 𝑥𝑖 the policy is deterministic. Then with probability 1

both the true action 𝑎𝑖 and the resampled action 𝑏𝑖 will be identical.

There is no point in trying to learn to distinguish them, the model

can only learn to output "0.5" for these samples.

2
Just as in the classical reward model case, we need to adapt it to include some

exploration - We do not delve into this topic here as it is not different.
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Replacing the sampling of A’ by an expectation . The sampling

of 𝐴′
adds a source of noise in the training, which can be avoided:

instead of producing one single counterfactual sample 𝑥, 𝑎′, 𝑧 = 0

with a sampled 𝑎′, we can return one for each possible action 𝑎, and

weight these samples in the learning by their sampling probability

𝜋0 (𝑎′ | 𝑥). This does not change the expectation of the loss (we

replaced the loss on samples of 𝑎′ by the expected loss), but reduces
the variance; at the cost of a larger training set size. Empirical

experiments in Section 3.1 confirm that this improves the quality

of the learned policy.

3 EMPIRICAL RESULTS
3.1 On synthetic data
We now compare, in a synthetic environment, several offline learn-

ing methods for contextual bandits. Our experiments can be repro-

duced with a notebook shared in the supplementary material, and

the description of the datasets is available in the appendix.

On these synthetic datasets we trained: A direct model of the

reward (DM), a CSI model as described in section 2.2 — either

sampling the counterfactual action (CSI-sampling) or taking the

expectation (CSI-expect) ) — and Logarithmic Smoothing, a recent

differentiable IPS based method [17].

Table 1 reports the mean normalized reward on 100 environ-

ments with different sample size of the collected datasets. With

lowest sample counts, DM method performs well. However, as

sample counts increase, this method seems to plateau, while the

performances of CSI and IPS increase and outperform DM. IPS

gives overall the best results, as expected, but with 1M samples

CSI-expect is reasonably close. We also note that CSI-expect con-

sistently improves on CSI-sampling, as predicted. Our proposed

method is robust and performs well in environments where context

effects are important.

Table 1: Click-through rate on synthetic data

Nb Samples 10K 100K 500K

DM 0.76 0.83 0.84

CSI-sampling 0.62 0.82 0.91

CSI-expect 0.71 0.87 0.92

LS-IPS 0.82 0.93 0.96

3.2 On a live production system
Banner design optimization. We tried our method on our produc-

tion system, selecting the design (the size of a grid of products) of

ad banners displayed on the web, on large-scale experiments, with

several millions positive — i.e. clicked — banners per day.

Production baseline. The baseline was a DM (Section 1) using a

logistic regression with quadratic kernel.

Exploration. Online, the policy is a mixture of 5% uniform explo-

ration, with a multinomial assigning to each action a probability

∝ 𝑝 (𝑦 |𝑥, 𝑎)𝛼 where 𝛼 is a temperature parameter.

Learning from counterfactual samples. We applied the (CSI), learn-

ing a model 𝑝 (𝑍 = 1|𝑥, 𝑎,𝑦 = 1) with the same logistic regression,
features and second order interactions as the previous production

model. We only re-tuned the L2-regularization of this logistic.

Experiments with a reduced set of features. For privacy reasons,

we wanted to be able to learn a policy with only a subset of the

context features which were used in the production model. Di-

rectly fitting a reward model with only this subset of features was

performing poorly. Using the method proposed here allowed to

find a policy with the same subset of features whose performances

were only slightly worse than the baseline with all features; thus
proving that the down-lift observed when fitting the reward
model with less features was due to confounding effects.

Experiments with the full set of features. We also noted that the

proposed method improved on our production system by more
than 1% according to an IPS estimate. We thus tested it online,

keeping the same exploration scheme as the baseline’s. To ensure

that the new model was able to train efficiently when gathering its

own data, we split the users in 4 populations ABCD: A used the

reference, trained on all available data, B used a CSI, also trained

on all data, C and D used models similar to A and B; with training

sets restricted to user data from their own population (so 25% of the

data). Table 2 shows the online and offline results.Online, policies
learned from CSI consistently over-performed the baseline
by 0.5% to 1%.

Table 2: Experiments on our large-scale “banner design”
dataset. Values indicate the percentage of clicks relative to
the reference DMmodel with all features (100%), i.e., a per-
centage increase or decrease compared to the reference.

Model Clicks
IPS estimate

Clicks
Online A/B test

DM, all features (Reference) 100% 100%

DM, features subset 94% [ 92% - 95% ]

CSI, features subset 99% [ 98.0% - 99.0% ]

CSI, all features 101.5% [ 100.4%,100.5% ]

DM, all features, 25% users 99.5% [99.5%;99.7%]

CSI, all features, 25% users 100.4% [100.0%;100.2%]

Towards IPS learning on this system. Since we used IPS for evalu-

ation, and have low enough variance to use it as an estimator, why

don’t we directly optimize it? We were able to learn an IPS model

which confidently increased the production DM baseline; according

to IPS estimator on kept out data. However, when deployed online,

the observed performances were not aligned with the expectation

from IPS. We argue that it might be due to small sequences effects

that were interfering with the training of this model, leading to

discrepancies between offline and online performances. Also, even

if this hypothesis is true, it is not completely clear why IPS was

more affected by these effects than other methods. We thus believe

that investigating problems that are "almost-contextual-bandit", and

the robustness of different contextual bandit algorithms to such

settings, is a promising future research area.
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A PROOF OF THE LEMMA 2.1
We suppose that for each context 𝑥 , 𝜋0 covers the possible action

space A(𝑥), that is for each context 𝑥 :

∀𝑎 ∈ A(𝑥), 𝜋0 (𝑎 |𝑥) > 0 .

Now, to clarify the definition of random variables, we note: 𝐴

the action as sampled online, 𝐴′
the resampled action, and 𝐵 the

action observed in the log example. That is:

𝐵 :=
(
𝐴 if 𝑍 = 1 else 𝐴′) .

For a context 𝑥 , and any 𝑎 ∈ A(𝑥), we have:

P(𝑍=1|𝑋=𝑥, 𝐵=𝑎,𝑌=1) = P(𝑍=1, 𝐵=𝑎,𝑌=1|𝑋=𝑥)
P(𝑍=0, 𝐵=𝑎,𝑌=1|𝑥) + P(𝑍=1, 𝐵=𝑎,𝑌=1|𝑋=𝑥)

=
1

1 + P(𝑍=0, 𝐵=𝑎,𝑌=1 | 𝑋=𝑥 )
P(𝑍=1, 𝐵=𝑎,𝑌=1 | 𝑋=𝑥 )

By definition of 𝐵, when 𝑍 = 1:

P(𝑍 = 1, 𝐵 = 𝑎,𝑌 = 1|𝑋 = 𝑥) = P(𝑍 = 1, 𝐴 = 𝑎,𝑌 = 1|𝑋 = 𝑥)
= 0.5 × P(𝑌 = 1|𝑋 = 𝑥,𝐴 = 𝑎)P(𝐴 = 𝑎 |𝑋 = 𝑥)

and when Z=0, noting Y ⊥ A’:

P(𝑍 = 0, 𝐵 = 𝑎,𝑌 = 1|𝑋 = 𝑥) = P(𝑍 = 0, 𝐴′ = 𝑎,𝑌 = 1|𝑋 = 𝑥)
= 0.5 × P(𝑌 = 1|𝑋 = 𝑥)P(𝐴′ = 𝑎 |𝑋 = 𝑥)
= 0.5 × P(𝑌 = 1|𝑋 = 𝑥)P(𝐴 = 𝑎 |𝑋 = 𝑥)

Then:

P(𝑍 = 1|𝑋 = 𝑥, 𝐵 = 𝑎,𝑌 = 1) = 1

1 + P(𝑌=1 |𝑋=𝑥 )
P(𝑌=1 |𝑋=𝑥,𝐴=𝑎)

= 𝜎

(
log

(
P(𝑌 = 1|𝑋 = 𝑥,𝐴 = 𝑎)

P(𝑌 = 1|𝑋 = 𝑥)

))

B DETAILS ON THE EXPERIMENTS
Experiments of Section 3.1 were run on a synthetic dataset where

we have an oracle for the exact reward function and distribution

of context, allowing exact evaluation of the expected reward of a

policy.

Choice of the synthetic environment. We wanted an environment

where the effect of context is more important than the effect of the

actions, to ensure that either modeling correctly or removing the

effect of context is important. Here we note that offline experiments

proposed in the literature usually do not share this property: many

experiments have been run on contextual bandit made from multi-

label dataset, and for each context exactly one (or a few) actions

lead to a reward of 1. In such settings, the best possible reward does

not depend (much) on the context, we thus did not re-use these

benchmarks.

https://doi.org/10.1145/3534678.3542622
https://openreview.net/forum?id=d7W4H0sTXU
https://doi.org/10.1145/3383313.3412215
https://arxiv.org/abs/1602.02176
https://arxiv.org/abs/1602.02176
https://proceedings.neurips.cc/paper_files/paper/2024/file/9379ea6ba7a61a402c7750833848b99f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9379ea6ba7a61a402c7750833848b99f-Paper-Conference.pdf


Offline Contextual Bandit with Counterfactual Sample Identification Recsys ’25: CONSEQUENCES Workshop, September, 2025, Prague

Description if the synthetic environment . We run experiments

on a context space X := {0, 1}7 of 128 contexts described by 7

binary features; and an action space A := {0, 1}5 of 32 actions. For
each run of our experiments, we started by sampling a contextual

bandit environment defined as: i) a distribution on X and a reward

model onX𝑥A. These were defined by logistic models with random

coefficients. The set of features used here to define the oracle was

slightly richer than the set of features used when fitting the models

or policy, to introduce some level of model miss-specification. This

gives us an environment, and an oracle to estimate the expected

reward of any policy.

Dataset generation . From this contextual bandit, we sampled a

first dataset from an uniform policy. We then fit a first model (either

directly fitting the reward, or using the method of this paper), and

collected a second dataset following the 5%-epsilon-greedy policy

defined by this model. We then ran different algorithm on this

second dataset; and compared the results of their greedy policy.

Experiment results in the main section are average on runs where

the dataset was collected following a direct model, or a CSI. In

practice, we did not observe noticeable differences between the two

sets of runs, but wanted to control that using an algo or another

here did not change significantly the results.

Model details. Both direct model and CSI in these experiments

were fitted with a scikit-learn logistic regression using features

from context, action and context-action interactions: (𝑥, 𝑎, 𝑥 × 𝑎𝑇 ).
The IPS model searched a policy in the same parameter space. For

each trained model, we then evaluated the greedy policy inferred

from the model; normalized so that the best possible policy in this

environment gets a reward of 1 and the worst possible gets 0.
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