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Inferring the potential consequences of an unobserved event is a fundamental scientific question. To this end, Pearl’s celebrated

do-calculus provides a set of inference rules to derive an interventional probability from an observational one. In this framework, the

primitive causal relations are encoded as functional dependencies in a Structural Causal Model (SCM), which maps into a Directed

Acyclic Graph (DAG) in the absence of cycles. In this paper, by contrast, we capture causality without reference to graphs or functional

dependencies, but with information fields. The three rules of do-calculus reduce to a unique sufficient condition for conditional

independence: the topological separation, which presents some theoretical and practical advantages over the d-separation. With this

unique rule, we can deal with systems that cannot be represented with DAGs, for instance systems with cycles and/or ‘spurious’ edges.
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1 INTRODUCTION

As the world shifts toward more and more data-driven decision-making, causal inference is taking more space in applied

sciences, statistics and machine learning. This is because it allows for better, more robust decision-making, and provides

a way to interpret the data that goes beyond correlation [1]. For instance, causal inference provides a language to

describe and solve Simpson’s paradox, which embodies the “correlation is not causation” principle as can be found in

any “Statistics 101” basic course. The main concern in causal inference is to compute post-intervention probability

distributions from observational data. For this purpose, graphical models are practical because they allow representing

assumptions easily and benefit from an extensive scientific literature.

In his seminal work, Pearl builds on graphical models [2] to introduce the so-called do-calculus. Several extensions

to this do-calculus have been proposed recently [3–6]. As asserted by Pearl, language is an important element in

this research program [7]. Causal graphical models move the focus from joint probability distributions to functional

dependencies thanks to the Structural Causal Model (SCM) framework. By leveraging the concept of information sets,

we bring a new, complementary view to the causal reasoning toolbox.

So, we introduce a general, unifying framework for causal inference that may be used for both recursive and

nonrecursive systems [8] (i.e. with and without cycles). But the cost for this conceptual generalization is a bit of

abstraction: in what we propose, the structure is implicit, and there are no arrows. In particular, while DAGs modeling

does not rely directly on random variables but on joint probability distributions (see [9], footnote 3 or [10] Appendix A),
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our approach requires going back to the classical primitives of probabilistic models: sample sets, 𝜎-fields, measurable

maps and random variables.

The present paper, however, has been written so that the main messages can be understood with the usual graphical

concepts used in the field of causal inference. In particular, the notion of Topological Separation is explained for the

specific case of DAGs, Theorem 10 and Examples 8, 9 and 13 should be readable without the concept of information

field.

Roughly speaking the information fields are useful in this paper to introduce the notions of (1) well-posedness

(Remark 3), (2) context specific independence (3) intervention variable and (4) conditional precedence. Moreover, they

constitute a key technical concept for the proofs (see the companion paper [11]).

Related work and contributions. We extend the causal modeling toolbox thanks to two notions: information fields and

topological separation. The concept of information field extends the expressiveness of the Structural Causal Model,

and allows for instance to naturally encode context specific independence [5]. The topological separation is visually

practical because it just requires to check that two sets are disjoints (see the last three examples). By contrast, the

d-separation requires to check that all the paths that connect two variables are blocked. Moreover, as its name suggests,

the topological separation has a theoretical interpretation. Our main result is Theorem 10, which is a generalization of

do-calculus that can be applied in particular to nonrecursive systems [12], and which subsumes several recent results.

We pinpoint the novelty of our approach with our last example, a system with cycles where our framework identifies a

probabilistic independence that the framework developed in [13] (for cycles) does not.

For the sake of readability we state and illustrate some of our key results without proofs, which are provided in the

companion paper [11] alongside other results. Section 2 provides a few reminders on probability theory, and then explains

how one can move from the standard Structural Causal Model (SCM) to our proposal of Information Dependency Model

(IDM) with the help of information fields. Section 3 introduces the notion of conditional precedence, which in particular

allows us to encode intervention variables in the IDM. Section 4 contains the definition of Topological Separation.

Section 5 contains our main result, which states that Topological Separation implies conditional independence. We

then explain why this theorem subsumes several recent results and Pearl’s do-calculus. We also provide an example for

which a recently published paper [13] on causality and cycles does not identify a conditional independence, but our

framework does.

2 INFORMATION FIELDS

We start with a few reminders from probability theory. A 𝜎-field (henceforth sometimes referred to as field) over a set D

is a subset D ⊂ 2
D
, containing D, and which is stable under complementation and countable union. The trivial 𝜎-field

over the set D is {∅,D}. The complete 𝜎-field over the set D is 2
D
. When D′ ⊂ D are two 𝜎-fields over the set D, we

say that D′ is a subfield of D. If two sets D1, D2 are equipped with 𝜎-fields D1, D2, we denote by D1 ⊗ D2 the product

𝜎-field on D1 ×D2 generated by the rectangles {𝐷1 ×𝐷2 |𝐷𝑖 ∈ D𝑖 }. Let (Ω,F, P) be a probability space and (U,U) a set
and a 𝜎-field over this set. Probability theory defines a random variable as a measurable mapping from (Ω,F) to (U,U).

Let A be a finite set and Ω = ×𝑎∈AΩ𝑎 a sample space and F𝑎 be a 𝜎-field over Ω𝑎 . Let Pr𝑎 a probability over (Ω𝑎,F𝑎)
and Pr =

⊗
𝑎∈A Pr𝑎 . Let (U𝑎)𝑎∈A be a collection of sets, with U𝑎 being a 𝜎-field over U𝑎 for all 𝑎. We are interested in

some random variables (𝑈𝑎)𝑎∈A such that𝑈𝑎 is valued in U𝑎 .
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It is standard to model causal hypotheses using Structural Causal Models (SCMs)[10]. An SCM consists of a list of

assignments (𝜆𝑎)𝑎∈𝐴 alongside a parental mapping 𝑃 : A→ 2
A
such that

𝑈𝑎 (𝜔) = 𝜆𝑎 (𝑈𝑃 (𝑎) (𝜔), 𝜔𝑎) ∀𝜔 ∈ Ω ∀𝑎 ∈ A (1)

where 𝜔𝑎 is the projection of 𝜔 on Ω𝑎 .

To get the graphical representation of an SCM –in (A,A × A)– we draw an arrow 𝑎 → 𝑏 whenever 𝑎 ∈ 𝑃 (𝑏).
Usually, the graphical representation is assumed to be a DAG, which means that the parental mapping induces a partial

order. We will not need this hypothesis here. More often than not, the reasoning is made on the graphical representation

which is uniquely defined by the parental mapping, so that the assignements functions do not even need to be specified.

For a given applied problem, the SCM is derived from expert knowledge, assumptions and data analysis methods. The

SCM is a central tool in causal analysis but its graphical representation does not naturally account for situations such

as Context Specific Independence [5], where some edges are spurious.

We may wish for more flexibility, so we call configuration space the product space 1

H =
∏
𝑎∈A
U𝑎 × Ω . (2)

The configuration field H =
⊗
𝑎∈A

U𝑎 ⊗ F is a 𝜎-field over H (with F =
⊗

𝑎∈A F𝑎). We then extend the definition

of SCM thanks to the following observation: we can express the SCM by saying that 𝜆𝑎 is a map from H to U𝑎

(𝜆𝑎 : (H,H) → (U𝑎,U𝑎)) while imposing that 𝜆𝑎 "only depends on 𝑈𝑃 (𝑎) and 𝜔𝑎". It is standard (see [15, Chap. 1 p.

18]) in probability theory that such property is – under mild assumptions– equivalent to a measurability constraint on

the random variable𝑈𝑎 . Hence (1) can be restated as

𝜆−1𝑎 (U𝑎) ⊂
⊗

𝑏∈𝑃 (𝑎)
U𝑏 ⊗

⊗
𝑏∉𝑃 (𝑎)

{∅,U𝑏 } ⊗ F𝑎 ⊗
⊗
𝑏≠𝑎

{∅,Ω𝑏 }, (3)

or, with a slight abuse of notations that we will sometimes use throughout this presentation
2

𝜆−1𝑎 (U𝑎) ⊂
⊗

𝑏∈𝑃 (𝑎)
U𝑏 ⊗ F𝑎 . (4)

Informally, an information field is anything one may want to see on the right-hand side of Equation (4). For instance,

consider the case where A = {𝑎, 𝑏, 𝑐}. If 𝜆−1𝑎 (U𝑎) ⊂ {∅,Ω𝑎} ⊗ {∅,Ω𝑏 } ⊗ {∅,Ω𝑐 } ⊗ F𝑎 ⊗ {∅,Ω𝑏 } ⊗ {∅,Ω𝑐 }, that we
abusively write 𝜆−1𝑎 (U𝑎) ⊂ F𝑎 , this means that 𝜆𝑎 (𝑢𝑎, 𝑢𝑏 , 𝑢𝑐 , 𝜔𝑎, 𝜔𝑏 , 𝜔𝑐 ) = 𝜆𝑎 (��𝑢𝑎,��𝑢𝑏 ,��𝑢𝑐 , 𝜔𝑎,��𝜔𝑏 ,��𝜔𝑐 ) only depends

on 𝜔𝑎 , that is, only depends on its own “source of uncertainty” (the field F𝑎). If (abusively) 𝜆
−1
𝑏
(U𝑏 ) ⊂ F𝑎 ⊗ U𝑐 , this

means that 𝜆𝑏 (𝑢𝑎, 𝑢𝑏 , 𝑢𝑐 , 𝜔𝑎, 𝜔𝑏 , 𝜔𝑐 ) = 𝜆𝑏 (��𝑢𝑎,��𝑢𝑏 , 𝑢𝑐 , 𝜔𝑎,��𝜔𝑏 ,��𝜔𝑐 ) only depends on (𝑢𝑐 , 𝜔𝑎), that is, only depends on the

uncertainty 𝜔𝑎 (the field F𝑎) and on the variable 𝑢𝑐 (the field U𝑐 ). More complex examples will be given later.

We thus extend the definition for SCMs. We propose the name Information Dependency Model

Definition 1 (Information Dependency Model). An Information Dependency Model is a collection (I𝑎)𝑎∈A of

subfields ofH such that, for 𝑎 ∈ A, I𝑎 ⊂
⊗
𝑏∈A

U𝑏 ⊗ F𝑎 . The subfield I𝑎 is called the information field of 𝑎.

The SCM is now defined by the measurability property

𝜆−1𝑎 (U𝑎) ⊂ I𝑎 ∀𝑎 ∈ A . (5)

1
also called hybrid space [14], hence the H notation

2
we omit the trivial fields in the product
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Property (5) expresses in a very general way that the random variable𝑈𝑎 may only depend upon the information I𝑎

available to the random variable. For a given applied problem, like for the SCM, the IDM can be derived from expert

knowledge, assumptions and data analysis methods. In particular, any SCM can be mapped into an IDM.

𝑍

𝑇 𝑌

(a) DAG.

𝑍

𝑇𝐼 𝑌

(b) Modeling intervention with the intervention vari-
able 𝐼 .

Fig. 1. Common cause.

Example 2 (Common cause). First, to better understand how DAGs – and more generally SCMs can be modeled with

information fields, we provide a detailed instance for a set of random variables that can be represented by the DAG in

Figure 1. Such an effort is not required in practice, because the measurability properties are fully specified by the

DAG for such a simple instance. Let A = {𝑍,𝑇 ,𝑌 }. To simplify the exposition, we suppose that the values of each of

the three random variables represented on the DAG belong to {0, 1}. Then, U𝑍 = U𝑇 = U𝑌 = {0, 1}, each equipped

with the complete field U𝑍 = U𝑇 = U𝑌 =
{
∅, {0}, {1}, {0, 1}

}
. We take Ω = {0, 1}3 as Nature set, equipped with the

complete field F = 2
Ω made of all subsets of Ω. We write Ω = Ω𝑍 × Ω𝑇 × Ω𝑌 , where Ω𝑍 = Ω𝑇 = Ω𝑌 = {0, 1}, and

F = F𝑍 ⊗ F𝑇 ⊗ F𝑌 , where F𝑍 = F𝑇 = F𝑌 =
{
∅, {0}, {1}, {0, 1}

}
. To represent, for instance, the arrows pointing to 𝑌 in

the DAG in Figure 1 (as well as implicit assumptions about information on Nature), we require that the information field I𝑌
satisfies I𝑌 ⊂ {∅,Ω𝑍 } ⊗ {∅,Ω𝑇 } ⊗ F𝑌 ⊗ U𝑍 ⊗ U𝑇 ⊗ {∅,U𝑌 }. This relation expresses that the information of 𝑌 depends at

most on its own “source of uncertainty” (the field F𝑌 ) and on the decisions of both 𝑍 and 𝑇 (the field U𝑍 ⊗ U𝑇 ). Again, the

effort of describing explicitly the information field is not required in the case of DAGs, because the mapping from DAGs to

IDMs is trivial. On the other hand the IDM allows to express more sophisticated hypotheses.

Remark 3 (Solvability). When the system is recursive –i.e. when it admits a fixed causal ordering and can be represented

by a DAG – there is no question of well-posedness. One can simulate a sample of random variables by first generating the

variables that do not have ancestors, and then following the graph along their descendants. Such procedure is not possible

for the more general case of nonrecursive systems, and we need an additional property to ensure that the system is well

defined: we present the solvability property in the companion paper [11]. We need in particular to exclude cases such as

self-information (that is 𝑎 ∈ 𝑃 (𝑎)), and more generally case where the system of equations (1) could have several solutions

(consider for instance 𝑥 := 𝑦 and 𝑦 := 𝑥) or no solution at all .

3 CONDITIONAL PRECEDENCE

In this section, we exploit the flexibility of the information field to extend the definition of precedence. For any 𝐵 ⊂ A,
let H𝐵 = F ⊗

⊗
𝑏∈𝐵

U𝑏 ⊂ H. In our extended definition of SCM (the Information Dependency Model), we do not specify

a precedence relation: the primitives are the information fields, and the notion of precedence is deduced from those

fields. For instance, the traditional precedence relation – or parental relation– on A writes

P𝑎 =
⋂

𝐵∈A;I𝑎⊂H𝐵

𝐵. (6)
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One can check that 𝑃 (𝑎) = P𝑎 when 𝑃 (𝑎) is minimal: the relation𝑈𝑎 (𝜔) = 𝜆𝑎 (𝑈𝑃 (𝑎) (𝜔), 𝜔𝑎) implies that I𝑎 ⊂ H𝑃 (𝑎) ,

moreover the minimality means that it is the smallest subset of A satisfying such constraint. So on a DAG, 𝑏 ∈ P𝑎
means that there is an arrow from 𝑏 to 𝑎.

Here is how the information field allows to extend the definition of precedence.

Definition 4 (Conditional Precedence). For any subset 𝐻 ⊂ H of configurations, and any subset𝑊 ⊂ A, we set

P𝑊,𝐻𝑎 =
⋂

𝐵∈A;I𝑎∩𝐻 ⊂H𝐵∪𝑊 ∩𝐻
𝐵 , (7)

and call it the precendence conditioned on (𝑊,𝐻 ).

Tikka et al. [5] manage to summarize the three rules of do-calculus thanks to the notions of context specific

independence and labeled DAGs. Our definition allows us to reproduce their approach.

Example 5 (Context Specific Independence). In order to model spurious edges, Tikka et al. [5] rely on so-called

labeled DAGs that can be turned into a context specific DAG by removing the arcs that are deactivated (spurious) in the

context of interest. In the formalism that we propose, such context is represented by a subset of H. Indeed, if we denote

by 𝐻 ∈ H the context for which an arc (𝑎, 𝑏) is deactivated (in the language of [5]), we encode this by the following two

properties

𝑎 ∉ P∅,𝐻𝑏 (8a)

𝑎 ∈ P∅,H\𝐻𝑏 . (8b)

Such a property can be encoded in the information set of 𝑏 I𝑏 .

For the reader familiar with [5], it is then easy to guess how we are going to model intervention variables.

Example 6 (Intervention variables). To introduce the possibility to intervene on a variable, we use a simple procedure.

Suppose we are interested in an intervention profile ˆ𝜆𝑍 for a subset 𝑍 ⊂ A. For this purpose, we consider a new family of

fields ˆI𝑧 ⊂ H, for 𝑧 ∈ 𝑍 and we suppose that ˆ𝜆𝑍 is ˆI𝑧-measurable, for any 𝑧 ∈ 𝑍 . Then, we enrich the model as follows: (i)

we introduce a new intervention variable 𝐼 , equipped with Ω𝐼 = {0, 1} and U𝐼 = {0, 1}, and who only has access to its

private information in Ω𝐼 ; (ii) we straightforwardly adapt the information fields for A \ (𝑍 ∪ 𝐼 ) and the probability P; (iii)
we replace the information field I𝑧 by

(
{0} ⊗ I𝑧

)
∪
(
{1} ⊗ ˆI𝑧

)
, for 𝑧 ∈ 𝑍 .

More formally, we introduce the new model
(
˜A, (Ω̃, ˜F),

{
˜U𝑎, ˜U𝑎

}
𝑎∈ ˜A

,

{
˜I𝑎

}
𝑎∈ ˜A

)
, where ˜A = A ∪ {𝐼 }, Ω̃ = Ω × {0, 1},

˜U𝐼 = {0, 1}, ˜U𝑎 = U𝑎 for any 𝑎 ∈ A, and

˜I𝑎 = I𝑎 ⊗ {∅,U𝐼 } , ∀𝑎 ∈ A \ 𝑍 , (9a)

˜I𝑧 = ˆI𝑧 ⊗ U𝐼 , ∀𝑧 ∈ 𝑍 , (9b)

I𝐼 =
⊗
𝑎∈A
{∅,Ω𝑎} ⊗

{
∅, {0}, {1}, {0, 1}

}
⊗
⊗
𝑎∈A
{∅,U𝑎} . (9c)

We also extend the probability P as a product probability ˜P = P ⊗ 𝜇 on Ω̃, where 𝜇 is a full support probability on {0, 1}.

4 TOPOLOGICAL SEPARATION

Next we introduce the topological separation, which can be seen generalization of the d-separation.
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𝑋1 𝑋2

𝑌1 𝑌2𝜉1 𝜉2

(a) Original graph.

𝑋1 𝑋2

𝑌1 𝑌2𝜉1 𝜉2

(b) topological separation is checked on the initial graph
𝑊𝑋𝑖

= 𝑌𝑖 .

Fig. 2. Topological separation is easy to check: nonrecursive system.

For any subsets 𝐵 ⊂ A and 𝐵 𝑗 ⊂ A, 𝑗 = 1, . . . , 𝑛, we write 𝐵1 ⊔ · · · ⊔ 𝐵𝑛 = 𝐵 when we have both 𝐵 𝑗 ∩ 𝐵𝑘 = ∅ for
all 𝑗 ≠ 𝑘 and 𝐵1 ∪ · · · ∪ 𝐵𝑛 = 𝐵. In addition, we denote by 𝐵 the smallest subset of A that contains 𝐵 and its own

predecessors under P𝑊,𝐻 . As explained in the companion paper [11] (see also [16]), 𝐵 is the topological closure of 𝐵
under a topology induced by P𝑊,𝐻 .

Definition 7 ( Topological Separation). Let 𝐻 ⊂ H and 𝐵,𝐶,𝑊 ⊂ A. We say that 𝐵 and 𝐶 are (conditionally)

topologically separated (w.r.t. (𝑊,𝐻 )), denoted by 𝐵 ∥
𝑡
𝐶 | (𝑊,𝐻 ), if there exists𝑊𝐵,𝑊𝐶 ⊂𝑊 such that

𝑊𝐵 ⊔𝑊𝐶 =𝑊 and 𝐵 ∪𝑊𝐵 ∩𝐶 ∪𝑊𝐶 = ∅ . (10)

Observe that the condition is on the existence of a partition of the set of variables over which we want to condition.

On a DAG, when 𝐻 = H, we have topological separation of 𝐵 and 𝐶 with respect to𝑊 when there is a partition

(𝑊𝐵,𝑊𝐶 ) of𝑊 such that the sets of ancestors of 𝐵 ∪𝑊𝐵 and 𝐶 ∪𝑊𝐶 – using P𝑊,𝐻 (𝑎) = 𝑃 (𝑎) \𝑊 – are disjoint.

Because it can be proved that d-separation and topological separation are equivalent on a DAG, we think this

definition is very handy even for DAGs. Indeed, (1) the partition (𝑊𝐵,𝑊𝐶 ) can be derived mechanically (see companion

paper [11]), (2) once the partition is given, it is usually much quicker to check that the ancestors sets are disjoints than

checking that all the path between 𝐵 and 𝐶 are blocked by𝑊 .

Example 8 (Topological separation is easy to check: recursive system). The DAG in Figure 4 (left) illustrate

why this notion is practical. If one want to check that 𝑌1 and 𝑌2 are d-separated by𝑊 , one need to check that every path
that goes from 𝑌1 to 𝑌2 are blocked by𝑊 . By contrast, the topological separation can be checked visually on Figure 4 (right)

by setting𝑊𝑌1 =𝑊 ,𝑊𝑌2 = ∅ and checking that the red and blue sets are closed and do not intersect.

Example 9 (Topological separation is easy to check: nonrecursive system). We display in Figure 2 a nonrecursive

system for which we check (for 𝑋1 and 𝑋2 with respect to 𝑌1 and 𝑌2) our proposal of topological separation. This is – in our

humble opinion – simpler to check than Forré et al. ’s 𝜎-separation [13] because there are less intermediate steps.

5 INDEPENDENCE AND DO-CALCULUS WITH INFORMATION FIELDS

In this section, we suppose the random variables valued in finite sets for the sake of simplicity. We can now state our

version of Pearl’s three rules of do-calculus. The statement looks like a simple sufficient condition for conditional

independence thanks to the fact that we encode the intervention variables in the information fields.

Theorem 10 (Do-calculus).

𝑌 ∥
𝑡

𝑍 | (𝑊,𝐻 ) =⇒ Pr(𝑈𝑌 |𝑈𝑊 ,𝑈
𝑍
, 𝐻 ) = Pr(𝑈𝑌 |𝑈𝑊 , 𝐻 ) . (11)
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Causal Inference with Information Fields 7

We stress the conciseness of Theorem 10 — permitted by the notions introduced in this paper — as we now show

that it implies the three rules of Pearl, as well as two recent results.

Proposition 11. Rule 1 from [5] can be deduced from Theorem 10. In particular, Theorem 10 subsumes Pearl’s do-calculus

from [17].

Remark 12. In the same manner we could derive the 3 rules of Theorem 1 (do-calculus for stochastic interventions) in [6].

𝑋0

𝑋1 𝑋2

𝑋3

𝑋4

Fig. 3. 𝑋3 and 𝑋4 are independent conditioned on (𝑋0, 𝑋1, 𝑋2) but not independent if we only condition on (𝑋0, 𝑋1) . Visual proof of
topological separation:
𝑊𝑋4

= {𝑋1, 𝑋2 } and𝑊𝑋3
= {𝑋0 }

Example 13. The last example is inspired by the work of Witsenhausen [14] on causality. This example provides

arguments to explain why it is well posed (solvable). It is depicted in Figure 3 and corresponds to the following nonrecursive

binary SCM (𝑁𝑖 are independent, binary noise variables, ⊕ is the XOR operator):

𝑋0 = (𝑋1 .(¬𝑋2)) ⊕ (𝑁0 ⊕ 𝑋3) and 𝑋1 = (𝑋2 .(¬𝑋0)) ⊕ (𝑁1 ⊕ 𝑋4)

𝑋2 = (𝑋0 .(¬𝑋1)) ⊕ 𝑁2, 𝑋3 = 𝑁3 and 𝑋4 = 𝑁4 .

The random variables 𝑋3 and 𝑋4 are topologically separated by (𝑋0, 𝑋1, 𝑋2) –note that 𝑋2 is needed – , hence 𝑋3 and 𝑋4

are independent conditioned on (𝑋0, 𝑋1, 𝑋2) but not independent if we only condition on (𝑋0, 𝑋1).
Observe that the intuition that we could equivalently replace 𝑋0, 𝑋1 and 𝑋2 by a unique variable𝑊 is misleading: with

such a change, we would get a collider 𝑋4 →𝑊 ← 𝑋3 over which we are conditioning, which would make 𝑋4 and 𝑋3 non

blocked with respect to𝑊 .

Let us try to apply the elegant recent result of Forré et al. (Theorem 5.2 from [13]) on conditional independence in the

presence of cycles. We first observe that the Directed Mixed Graph (DMG) induced by the Input/output Structural Causal

Model (ioSCM) associated to our example (see Definition 2.3 and 5.1 ibid) looks like the graph of Figure 3. Second, we observe

that 𝑋0, 𝑋1 and 𝑋2 belong to the same strongly connected component 𝑆 (see [13]), in the sense that they are all ancestors and

descendants of each other. Third, let us consider the walk 𝑋4 → 𝑋1 ← 𝑋0 ← 𝑋3. Forré et al. provide a condition for a walk

to be open in definition 4.2. By apply this definition, we see that 𝑋4 → 𝑋1 ← 𝑋0 ← 𝑋3 is {𝑋0, 𝑋1, 𝑋2}-𝜎-open because:

• 𝑋4 → 𝑋1 ← 𝑋0 satisfies the collider definition (4.2, (a) in [13]) because 𝑋1 ∈ {𝑋0, 𝑋1, 𝑋2}
• 𝑋1 ← 𝑋0 ← 𝑋3 satisfies the left chain condition because 𝑋0 ∈ {𝑋0, 𝑋1, 𝑋2} ∩ 𝑆 , where 𝑆 is the strongly connected

component of 𝑋1.

hence this walk is {𝑋0, 𝑋1, 𝑋2}-𝜎-open (see Definition 4.2 ibid). Hence it seems that Theorem 5.2 from [13] could not be

used to state that 𝑋3 and 𝑋4 are independent conditioned on (𝑋0, 𝑋1, 𝑋2).
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We illustrate our theory with a numerical exact computation, taking the 𝑁𝑖 as binomial variables of parameter 0.1. We

solve the cycle by enumerating the 8 possible combinations of values for 𝑋0, 𝑋1 and 𝑋2 and selecting the only admissible

one.

This example illustrates the novelty of the IDM approach.

6 DISCUSSION

In this paper, we simplify and generalize the do-calculus by leveraging the concept of information field. The do-calculus

is reduced to one rule. We underline that the results come from the information structure, not the probability. Also,

because our approach is not based on graphical models, our work provides a new proof of Pearl’s original result. For

most cases, one only needs to understand the notion of inverse image to work with information fields on top of SCMs

and DAGs. In exchange, information fields provide a compact, unifying and versatile language that brings new intuitions

on the causal structure of the problem.

For instance, we illustrated why the Topological Separation is practical: once the partition of the conditioning

variables known, checking that an intersection is empty is easier than checking a blocking condition on a collection of

paths.

Also, we were able to recover a few recent results – how to handle spurious edges [5], how to handle stochastic

interventions [6], how to handle cycles [13]– , and we think that the Information Dependency Model is a powerful

technical tool for investigating potential new extensions of already existing results in the field of causal inference.

Moreover, many of those papers require the introduction of ad hoc frameworks. The Information Dependency Model

is a good candidate to bring uniformity and consistency. It can be a temporary detour to introduce new notions, for

instance the definition of Conditional Precedence 4 would have been harder to express with the SCM as primitive.

In addition, we presented and solved an example that cannot be handled easily with the current state of the literature.

Last, we mention that the notion of well-posedness we use was introduced in [16] half a century ago for another

field of applied mathematics. It is interesting to observe that this notion could serve a new purpose in the field of causal

inference.

Further work includes drawing connections with other research programs, such as Proposition 11 or questions

related to identification [18–20], using the framework developed in this paper. Also, it would be interesting to study the

connections of this work with [12, 13].
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