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ABSTRACT
Social choice theory provides a framework to aggregate prefer-

ences, but was not developed for the multidimensional applications

typical of recommender systems. Leveraging insights from a re-

cently published urn process, this work introduces a preference

aggregation strategy that adapts to the user’s context and inherits

the good properties of the maximal lottery, a Condorcet-consistent

solution concept.
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1 INTRODUCTION
An important solution concept in social choice theory is that of

the Condorcet winner [6]. A Condorcet winner is a candidate in an

election who wins a majority of votes in a head-to-head comparison

against each of the other candidates. A voting method is said to

be Condorcet consistent if it always selects the Condorcet winner
whenever one exists. Similar notions have been rediscovered in

different contexts by different communities (because they hide

the ubiquituous concept of zero-sum game Nash equilibrium); for

example, people interested in dueling bandits might have heard of

the von Neumann winner [9], while others might have heard of the

randomized Condorcet winner.

In [4], the authors propose a very simple urn process that con-

verges to a maximal lottery, a solution concept known as Con-

dorcet consistent. This process involves a single urn containing

balls, where each ball represents an alternative — or, equivalently,

a political candidate. Initially, the urn is filled with multiple balls

for each alternative. The procedure consists of repeatedly selecting

two alternatives at random from the urn and having a randomly
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1 two alternatives are 
sampled from the urn 

2 a randomly sampled user 
ranks the alternatives

3 the loosing 
alternative is replaced 

4 the urn distribution is 
updated

Figure 1: Graphical representation of the urn process intro-
duced by [4], for simplicity we omit the mutation rate in this
representation. Iteratively, (1) two alternatives are sampled
from the urn, then (2) a randomly sampled user expresses
their preference for the two options, (3) the ball of the least
preferred option is then replaced in the urn by a ball for the
preferred option, which (4) changes the states of the urn.

chosen user —or voter, in the context of [4] — express their pref-

erence between them. The ball representing the losing alternative

is then replaced in the urn by another ball representing the win-

ning alternative. The general idea is illustrated in Figure 1. Under

some technical assumptions, (1) the distribution of winning balls

converges to the maximal lottery and (2) the proportions in the urn

get closer and closer to the maximal lottery.

We use the main idea of [4] to introduce a novel algorithm for rec-

ommender systems. Our innovation was prompted by the parallels

between this urn and balls mechanism and the iterative feedback

mechanisms used to fine-tune large language models (RLHF). Simi-

lar pick-your-preferred-option mechanism can also be observed in

industrial recommender systems (e.g., music recommendation) to

warm start the system to a given user taste. We show that using

some function approximation tricks [11, 8], the urn process idea can

be ported to the world of generative AI and recommender systems.

Our goal in this research is to show that processes similar to [4]

can be used in an online context to identify maximal lotteries. Be-

cause recommender systems [3] and LLMs share many similarities,

the general principles of this study can be applied to both domains.

In fact, the formalization we propose in Section 2.1 does not distin-

guish between the two. A longer version of this extended abstract,

more tailored to an LLM focused readership, is available online [12].

It contains other experiments and pseudo-code for the algorithms.

https://orcid.org/0000-0002-0318-5333
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Recsys ’25: CONSEQUENCES Workshop, September, 2025, Prague Heymann et al.

2 PREFERENCE AGGREGATION AT THE USER
LEVEL

2.1 Mathematical model
We consider a finite set of alternatives A over which users from a

set U have preferences. There exists a probability distribution P
over the set of usersU, so that (U, P) is a probability space. The

preference of each user 𝑢 ∈ U is encoded with a partial order over

A which we denote by ≤𝑢 : for 𝑎1 and 𝑎2 in A, 𝑎1 ≤𝑢 𝑎2 simply

means that user 𝑢 prefers alternative 𝑎2 over 𝑎1.

Maintaining a comprehensive representation of each user’s pref-

erence relation is infeasible (we do not have access to everything,

and we need to encode it on a computer), which motivates mapping

users into an embedding space E using the function 𝜙 : U → E.
When we are given the task of selecting an alternative in A for a

user 𝑢0, who we only know by their embedding representation

𝜙 (𝑢0), we would ideally select a maximal element of (A, ≤𝑢0
).

However, (1) we do not know 𝑢0, and (2) a maximal element in

(A, ≤𝜙 (𝑢0 ) ) does not make any sense (yet). This is where prefer-

ence aggregation kicks in; see Section 2.2. The representation of 𝑢,

𝜙 (𝑢), may contain features known about the user, past interactions,

demographic data, information about their preference... we abstract

away the specifics here to focus on how the urn process can be

ported to this general setting.

We have highlighted an important modeling nuance. In discrete

choice theory, an agent’s decision is typically modeled stochasti-

cally. Randomness is often attributed to exogenous, unobservable

random shocks that influence the decision-making process. In con-

trast, we assume that each agent has a deterministic preference

relation. The observed stochasticity arises not from inherent ran-

domness in the agent’s decision-making but from the inability to

distinguish between agents with distinct preferences using the avail-

able data. This perspective shifts the source of uncertainty from

exogenous shocks to the limitations of observational data. It also

clarifies how preference data can be interpreted as nontransitive.

Note that the two sources of randomness are not incompatible,

and that we could also account for the agent’s stochastic decision-

making with our formalism.

2.2 Learning objective
Consider two possible alternative answers to a queries, 𝐴 and 𝐵. It

is natural to say that𝐴 is better than 𝐵 if the majority of users prefer

𝐴 over 𝐵. Extending this idea, a "maximal" alternative is one that is

preferred by a majority of users over any other possible alternatives.

This maximal alternative is commonly referred to as theCondorcet
winner, or when we allow randomization over alternatives, as the

maximal lottery. Maximal lotteries are known to have several

interesting properties that are discussed in several studies [10, 4, 5].

To be more formal: given some users (𝑢1, . . . 𝑢𝑛) ∈ U sampled from

P, we consider the task of identifying, using (𝑢1, . . . 𝑢𝑛), a policy 𝜋
from E to A that maximizes

min

𝜋 ′
:E→A

P
(
𝜋 (𝜙 (𝑢)) ⩾𝑢 𝜋 ′ (𝜙 (𝑢))

)
. (1)

This maxmin formulation is reminiscent of the game formulations

discussed in [18, 21, 17].

To make this formulation more vivid, in the context of the fa-

mous chatbot arena [7] (for LLM), 𝜋 would be our model, 𝜋 ′ would
be any competitor’s model, and our goal in expression (1) corre-

sponds to maximizing our score against our strongest contender. It

is important to note here that the notion of the strongest contender

is a priori specific to our model, as preference relations can be in-

transitive, and we might have in practice a Rock-Paper-Scissor like

contest; this perspective connects with the literature on evaluating

agents [19, 1, 15]. A pure solution to this problem is called the

Condorcet winner, but it may not exist. However, its existence is

guaranteed when we allow 𝜋 to be stochastic. In this case, a solution

that maximizes (1) is called a randomized Condorcet winner or a

maximal lottery.

2.3 Scoring methods for preference aggregation
A popular recommender system technique called Bayesian Person-

alized Ranking [20] (BPR) shares some similarities with RLHF. We

reinterpret the justification of BPR within our setting, where un-

certainty arises not from the user’s decision making but from the

user’s embedding representation. This reinterpretation leads to a

presentation that differs from the original work. BPR uses implicit

rankings derived from dataset interactions to predict the rankings

of new alternatives for a specific user. In [20], implicit preferences

refer to the relative rankings inferred from user behavior. For ex-

ample, in a recommender system, a clicked item is assumed to be

preferred over an unclicked item. In our setting, feedback is explic-

itly provided, but the structure of BPR remains relevant owing to

its connection with the Elo scoring system.

The central structuring assumption in BPR, relevant to our anal-

ysis, is that for any user 𝑢 ∈ U and two alternatives 𝑎1 and 𝑎2, the

preference probability is given by

P(𝑎1 ≤𝑢 𝑎2 | 𝜙 (𝑢)) = 𝜎 (𝑥𝜙 (𝑢 ),𝑎1 − 𝑥𝜙 (𝑢 ),𝑎2 ), (2)

where 𝜎 denotes the sigmoid function. The method assumes a hy-

pothesis class Θ for 𝑥𝑢,𝑎 , expressed as 𝑥𝑢,𝑎 = 𝑓 (𝜃, 𝜙 (𝑢), 𝑎) with
𝜃 ∈ Θ. The solution involves maximizing the likelihood augmented

by a Gaussian prior to enable quadratic regularization. In the con-
text of Recommender Systems, APA can be seen as an alter-
native to BPR that will handle in a principle manner non-
transitivity of the preference data.

3 ADAPTIVE PREFERENCE AGGREGATION
The Adaptive Preference Aggregation algorithm (APA) learns a

mapping from a fixed user embedding 𝜙 (𝑢) to a probability distri-

bution over a finite set of alternatives A, aiming to approximate a

maximal lottery for the population of users in the atom 𝜙 (𝑢).
Operating in an online fashion, it iteratively refines a neural net-

work that emulates an urn. At each step, a user 𝑢 ∈ U is sampled

according to the probability P, followed by sampling two alterna-

tives (𝑎1, 𝑎2) with a probability proportional to their presence in the
neural urn 𝑓𝜃 (𝜙 (𝑢)). The user preference between 𝑎1 and 𝑎2 is ob-

served, and the neural network weights 𝜃 are updated to minimize

the distance between the current output of the urn and the target

determined by the urn next state of the urn process. The algorithm

maintains the weights of the neural network, which defines the
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probability distributions over alternatives for each user embedding,

approximating the maximal lottery.

3.1 Function approximation and neural urn
We simply use a multilayer perceptron

𝑓𝜃 : 𝑦 → 𝑛 ∈ R |A |
+ , (3)

where 𝑛 represents the urn state, that is, the number of balls 𝑁𝑎 for

each alternative 𝑎 ∈ A given a user of embedding 𝑦 = 𝜙 (𝑢), and 𝜃
is the network parameter. We used ReLu for the last layer.

1
The

update should be

min

𝜃
| |𝑓𝜃 (𝜙 (𝑢)) − 𝑛𝑛𝑒𝑤 | |2, (4)

where 𝑛𝑛𝑒𝑤 = 𝑛
old

+ (𝑒𝑖 − 𝑒 𝑗 ), with 𝑒𝑖 and 𝑒 𝑗 being the one hot

encoded vector that represent the alternatives 𝑖 and 𝑗 that were

sampled for user 𝑢, and 𝑛
old

is the state of the neural urn when the

user is sampled : 𝑓𝜃 (𝜙 (𝑢)). As explained in [4], we added a small

mutation rate. This means that with a small probability, we set

𝑛𝑛𝑒𝑤 = 𝑛𝜃old + (𝑒𝑖 − 𝑒 𝑗 ), (5)

where 𝑒 𝑗 is taken at random from the urn proportionally to 𝑁 and

𝑒𝑖 is sampled uniformly from A. For the experiments, we used

two hidden layers with 32 activation units. To initialize the urn for

a given 𝑁 , we did some learning iterations by assigning random

values to 𝑁𝑛𝑒𝑤 of amplitude proportional to 𝑁

4 EXPERIMENTS
Other experiments can be found in this version of the paper [12].

We tookU = R3
. We also embed the element of A in R3

and use

the preference rule

𝑎1 ⩾𝑢 𝑎2 ⇐⇒ ||𝑎1 − 𝑢 | | ⩽ | |𝑎2 − 𝑢 | |. (6)

The implementation of the experiment will be provided in the

supplementary material, and was performed in Julia [2], with the

Flux [13, 14] learning library.
2
The setup is described in Figure 2

and the results are displayed in Figure 3. This simple experiment

illustrate how the urn process from [4] can be adapted to recom-

mender systems using function approximation. It also provide an

example of one of the limit of reward based methods such as BPR.

5 DISCUSSION
In this work, we clarify a key challenge faced when designing

a strategy to aggregate preferences while training systems such

as LLM or recommender systems: the uncertainty surrounding

users due to unrevealed information and their encoding within

the system. This uncertainty implies that the data may not be suf-

ficient to determine the optimal response to a query. Moreover,

the very notion of what is "optimal" becomes unclear. We propose

that one should aim to achieve a sense of Condorcet consistency.

We combined [4] with function approximation to develop an APA

1
alternatively we could have 𝑓𝜃 : 𝑦 → 𝑔 where 𝑔 is a generated alternative to be

closer to the LLM setting, or add a softmax layer to the perceptron, to be closer to the

standard approaches for modeling probability on a discrete set.

2
In this version [12], we used JuMP [16] and GLPK to compute the baselines (local or

global maximal lotteries). For practical reasons, we use a discretization of R2
to define

user embedding. Indeed, this allows us to compare the output of APA with the
direct computation of the maximal lotteries on the atoms of the grid using an
LP solver.

Figure 2: Visualization of the environment. Black squares
represent voters, the number on their right their relative
mass. The system can only distinguish between voters from
group 1 and voters from group 2. The situation in group 1
maps us to a typical majority paradox from social choice the-
ory [17] where reward models will not select an alternative
prefered by the majority.

Figure 3: prediction of the neural urn on the two groups
after training. One can check that the theoretical maximal
lotteries are recovered.

algorithm that addresses this gap. Using a nontrivial and visual toy

example, we demonstrate that our system can learn the maximal

lottery. Further research is needed to understand the conditions

under which these observations hold. Specifically, because the urn

process, which inspired our approach, was not originally designed

for this type of application, there may be potential improvements in

sample complexity and computational efficiency. From an applied

perspective, testing this idea at scale would be an ambitious and

valuable follow-up study. Additionally, from a broader viewpoint,

the field needs to clarify which properties of social choice theory

such systems should possess. Collaborative filtering, a fundamental

concept in recommender systems, often relies on the idea that un-

derstanding one aspect of a user’s preferences can provide insights

into other aspects. We did not fully leverage this perspective in our

study, which is a limitation of the present work. From this research,

there is a clear need to clarify what generalization means in this

context and to investigate statistical properties such as convergence

of estimators for the lottery.
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